Vol. 70
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-08-24
Design of a Compact Stacked Yagi with a Novel Slotted Reflector and a Ladder-Like Director for Bandwidth Enhancement
By
Progress In Electromagnetics Research Letters, Vol. 70, 15-22, 2017
Abstract
A compact stacked Yagi antenna is proposed with bandwidth enhancement in this paper. To reduce the size of the antenna and simultaneously improve the front-to-back ratio (FTBR), a reflector, modified with six slots, two λ0/4 meanderline-shaped slots and four straight short slots, is employed. Furthermore, a ladder-like director is designed to overcome the mismatch loss caused by the diminution of the height between the reflector and driven dipole. As shown in both simulation and measurement, the proposed compact Yagi antenna can achieve a compact size of 0.55λ0×0.55λ0×0.08λ0, |S11| ≤ -10 dB bandwidth of 17.2% and an FTBR of 22dB at 2.2GHz. The acceptable results make the proposed Yagi antenna a good candidate for applications where compact size and wide bandwidth are needed.
Citation
Li Jiang, Fu-Shun Zhang, and Fan Zhang, "Design of a Compact Stacked Yagi with a Novel Slotted Reflector and a Ladder-Like Director for Bandwidth Enhancement," Progress In Electromagnetics Research Letters, Vol. 70, 15-22, 2017.
doi:10.2528/PIERL17051606
References

1. Kramer, O., T. Djerafi, and K. Wu, "Very small footprint 60 GHz stacked Yagi antenna array," IEEE Trans. Antennas Propag., Vol. 59, No. 9, 3204-3210, Sep. 2011.
doi:10.1109/TAP.2011.2161562

2. Chen, Z. N., Y. Juan, X. M. Qing, and W. Q. Che, "Enhanced radiation from a horizontal dipole closely placed above a PEC ground plane using a parasitic strip," IEEE Trans. Antennas Propag., Vol. 64, No. 11, 4868-4871, Nov. 2016.
doi:10.1109/TAP.2016.2594842

3. Piersanti, S., F. D. Paulis, A. Orlandi, S. Connor, B. Archambeault, P. Dixon, M. A Khorrami, and J. L. Drewniak, "Electric dipole equations in very-near-field conditions for electromagnetic shielding assessment --- Part II: wave impedance, reflection, and transmission," IEEE Trans. Electromagn. Compat., Vol. 59, No. 4, 1203-1209, Aug. 2017.
doi:10.1109/TEMC.2017.2674183

4. Yuan, B. and X. Wang, "Multi-objective optimization of double-folded Yagi antenna using genetic algorithms," Proc. Computational Intelligence and Software Engineering Conf., Dec. 2010.

5. Liu, H., Y. Liu, and S. X. Gong, "A novel dual-polarized slot Yagi-Uda array antenna with high gain and low profile," Proc. International Workshop on Electromagnetics: Applications and Student Innovation Competition, May 2016.

6. Wang, Q. Q., Z. P. Qian, W. Q. Cao, Y. S. Zhang, and K. Li, "60 GHz stacked Yagi magneto-electric dipole antenna with wideband and high gain properties," Proc. Communication Problem-Solving Conf., 454-457, Oct. 2015.

7. McMichael, I. T., A. I. Zaghloul, and M. S. Mirotznik, "A method for determining optimal EBG reflection phase for low profile dipole antennas," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2411-2417, May 2013.
doi:10.1109/TAP.2013.2244552

8. Best, S. R. and D. L. Hanna, "Design of a broadband dipole in close proximity to an EBG ground plane," IEEE Antennas Propag. Mag., Vol. 50, No. 6, 52-64, Dec. 2008.
doi:10.1109/MAP.2008.4768923

9. Huang, Y., A. De, Y. Zhang, T. K. Sarkar, and J. Carlo, "Enhancement of radiation along the ground plane from a horizontal dipole located close to it," IEEE Antennas Wireless Propag. Lett., Vol. 7, 294-297, 2008.
doi:10.1109/LAWP.2008.922141

10. Lim, W. G., H. S. Jang, and J. W. Yu, "New method for back lobe suppression of microstrip patch antenna for GPS," Proc. 40th Eur. Microw. Conf., 679-682, Sep. 2010.

11. Tang, M. Ch. and R. W. Ziolkowski, "Efficient, high directivity, large front-to-back-ratio, electrically small, near-field-resonant-parasitic antenna," IEEE Access, Vol. 1, 16-28, 2008.

12. Lu, L., K. X. Ma, F. Y. Meng, and K. S. Yeo, "Design of a 60-GHz Quasi-Yagi antenna with novel ladder-like directors for gain and bandwidth enhancements," IEEE Antennas Wireless Propag. Lett., Vol. 15, 682-685, 2016.
doi:10.1109/LAWP.2015.2469139