Vol. 69
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-07-24
A Near-Field Target Localization Method for MIMO Radar
By
Progress In Electromagnetics Research Letters, Vol. 69, 93-98, 2017
Abstract
The existing target localization algorithms almost cannot be used to near-field target localization in Multiple-Input Multiple-Output (MIMO) radar, and this paper presents a novel method. This algorithm uses Chan algorithm to obtain initial estimate of the targets. Then we define a new residual matrix and use the weighted least square (WLS) method to get a more accurate positioning result. The Fuzzy C-Means (FCM)algorithm is introduced to get more stable and accurate estimation. Furthermore, this algorithm achieves accurate positioning of the MIMO radar demonstrated by simulations.
Citation
Jurong Hu, Qianru Yuan, and Yu Zhang, "A Near-Field Target Localization Method for MIMO Radar," Progress In Electromagnetics Research Letters, Vol. 69, 93-98, 2017.
doi:10.2528/PIERL17041603
References

1. Godrich, H., A. M. Haimovich, and R. S. Blum, "Cramer Rao bound on target localization estimation in MIMO radar systems," 42nd Annual Conf. Information Sciences and Systems, 134-139, Princeton, NJ, United States, March 19-21, 2008.

2. Godrich, H., A. M. Haimovich, and R. S. Blum, "A comparative study of target localization in MIMO radar systems," Waveform Diversity and Design Conference, 124-128, Kissimmee, FL, United States, February 8-13, 2009.

3. Fishler, E., A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela, "MIMO radar: An idea whose time has come," Proceedings of the IEEE Radar Conference, 71-78, Philadelphia, PA, United States, April 26-29, 2004.

4. Lehmann, N. H., A. M. Haimovich, R. S. Blum, and L. Cimini, "High resolution capabilities of MIMO radar," 40th Asilomar Conf. Signals, Systems and Computers, 25-30, Pacific Grove, CA, United States, October 29-November 1, 2006.

5. Cekli, E. and H. A. Cirpan, "Unconditional maximum likelihood approach for localization of near-field sources: Algorithm and performance analysis," AEU-International Journal of Electronics and Communications, Vol. 57, No. 1, 9-15, 2003.
doi:10.1078/1434-8411-54100135

6. Zhang, X., L. Xu, and D. Xu, "Direction of Departure (DOD) and Direction of Arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC," IEEE Commun. Lett., Vol. 14, No. 10, 1161-1163, 2010.
doi:10.1109/LCOMM.2010.102610.101581

7. Chen, J., G. Liu, and X. Sun, "Passive localization of 3D near-field cyclostationary sources using parallel factor analysis," International Journal of Antennas & Propagation, 2013 (Article ID 657653), 2013.

8. Liang, J. and D. Liu, "Passive localization of mixed near-field and far-field sources using two-stage MUSIC algorithm," IEEE Transactions on Signal Processing, Vol. 58, No. 1, 108-120, 2010.
doi:10.1109/TSP.2009.2029723

9. Meng, Y., J. Xu, Y. Huang, and J. He, "Key factors of multi-station TDOA passive location study," International Conference on Intelligent Human-Machine Systems and Cybernetics, 220-223, 2015.

10. Zhang, J.-W., C.-L., Yu, B. Tang, and Y.-Y. Ji, "Chan location algorithm application in 3-dimension space location," 2008 ISECS International Colloquium on Computing, Communication, Control, and Management, 622-625, 2008.

11. Zhang, C. and Y. Gu, "Cluster analysis based and threshold based selection localization algorithm for WSN," International Conference on Electronics Information and Emergency Communication, 186-189, 2015.

12. Wang, H. and H. Guo, "Hyperbolic localization method for MIMO radar," International Radar Symposium (IRS), 880-885, 2011.

13. Yang, H. and J. Chun, "Hyperbolic localization in MIMO radar system," IEEE Antennas and Wireless Propagation Letters, 618-621, 2015.
doi:10.1109/LAWP.2014.2374603

14. Feng, J., L. C. Jiao, X. Zhang, M. Gong, and T. Sun, "Robust non-local fuzzy c-means algorithm with edge preservation for SAR image segmentation," Signal Processing, 487-499, 2013.
doi:10.1016/j.sigpro.2012.08.024