Vol. 68
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-06-06
A Compact Frequency Reconfigurable Monopole Antenna for Wi-Fi/WLAN Applications
By
Progress In Electromagnetics Research Letters, Vol. 68, 79-84, 2017
Abstract
In this paper, a compact reconfigurable monopole antenna is proposed working at three different frequencies depending upon the condition of the optical switch. The proposed reconfigurable antenna in the state of ON switchhas resonant frequencies of 2.45 GHz and 5.4 GHz covering the band of 1.8-2.7 GHz (Wi-Fi) and 5.26-5.99 GHz (WLAN) respectively. The same antenna during OFF state of switch operates only at 3 GHz covering the band of 2.49-3.84 GHz. The proposed multiband reconfigurable antenna is designed and fabricated on an FR-4 substrate having relative permittivity of 4.4, loss tangent of 0.02 and thickness of 1.6 mm. The antenna is fabricated and tested in the laboratory to validate the simulated results. A good agreement between the simulated and measured results is obtained in term of radiation pattern and return loss. The performance of the reconfigurable antenna under both states of switch is examined on the basis of the antenna parameters such as return loss, radiation pattern and gain.
Citation
Amjad Iqbal, and Omar A. Saraereh, "A Compact Frequency Reconfigurable Monopole Antenna for Wi-Fi/WLAN Applications," Progress In Electromagnetics Research Letters, Vol. 68, 79-84, 2017.
doi:10.2528/PIERL17041203
References

1. Peroulis, D., K. Sarbandi, and P. B. K. Katehi, "Design of reconfigurable slot antennas," IEEE Transaction on Antennas and Propagation, Vol. 53, 645-654, 2005.
doi:10.1109/TAP.2004.841339

2. Shynu, S. V., G. Augustin, C. K. Aanandan, P. Mohanan, and K. Vasudevan, "A reconfigurable dual frequency slot loaded microstrip antenna controlled by pin diodes," Microwave and Optical Technology Letters, Vol. 44, 374-376, 2005.
doi:10.1002/mop.20639

3. Huff, G. H., F. S. Zhang, and J. T. Bernhard, "A novel radiation pattern and frequency reconfigurable single turn square spiral microstrip antenna," IEEE Microwave and Wireless Components Letters, Vol. 13, 57-59, 1998.
doi:10.1109/LMWC.2003.808714

4. Yang, F. and Y. Rahmat-Samii, "A reconfigurable patch antenna using switchable slots for circular polarization diversity," IEEE Microwave and Wireless Components Letters, Vol. 12, 96-98, 2002.
doi:10.1109/7260.989863

5. Kolsrud, A. T., M. Y. Li, and K. Chang, "Dual-frequency electronically tunable CPW-fed CPS dipole antenna," Electronics Letters, Vol. 34, 609-611, 1998.
doi:10.1049/el:19980495

6. Shynu, S. V., G. Augustin, C. K. Aanandan, P. Mohanan, and K. Vasudevan, "A compact electronically reconfigurable dual frequency microstrip antenna for L-band applications," International Journal on Wireless and Optical Communications, Vol. 2, No. 2, 181-187, 2004.
doi:10.1142/S0219799504000295

7. Li, H., J. Xiong, Y. Yu, and S. He, "A simple compact reconfigurable slot antenna with a very wide tuning range," IEEE Transaction on Antennas and Propagation, Vol. 58, No. 11, 3725-3728, Nov. 2010.
doi:10.1109/TAP.2010.2071347

8. Hamid, M. R., P. Gardner, P. S. Hall, and F. Ghanem, "Reconfigurable vivaldi antenna," Microwave and Optical Technology Letters, Vol. 52, No. 4, 785-787, Apr. 2010.
doi:10.1002/mop.25030

9. Perruisseau-Carrier, J., P. Pardo-Carrera, and P. Miskovsky, "Modeling, design and characterization of a very wideband slot antenna with reconfigurable band rejection," IEEE Transaction on Antennas and Propagation, Vol. 58, No. 7, 2218-2226, Jul. 2010.
doi:10.1109/TAP.2010.2048872

10. Duncombe, J. U., "Infrared navigation — Part I: An assessment of feasibility (Periodical style)," IEEE Trans. Electron Devices, Vol. ED-11, 34-39, Jan. 1959.

11. Balanis, C. A., Antenna Theory Analysis and Design, 2nd Ed., John Wiley & Sons, New York, 1997.