Vol. 69
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-07-03
A Novel Circularly Polarised Antenna with Wide Power and Axial-Ratio Beamwidth by Using Tilted Dipoles
By
Progress In Electromagnetics Research Letters, Vol. 69, 37-43, 2017
Abstract
A novel circularly polarised antenna with wide 3 dB axial-ratio beamwidth (ARBW) and half power beamwidth (HPBW) is proposed in this letter. By using two pairs of tilted dipoles, the ARBW of the antenna is significantly enhanced to about 160° and 162° in the XZ- and YZ-planes, respectively. Meanwhile, its HPBW is also broadened to above 116° in the dual planes. A prototype is manufactured and measured to validate the method. The measured results show that |S11|<-10 dB reaches about 38.8% (1.37 GHz-2.03 GHz), and the AR at broadside bandwidth is 14% (1.51 GHz-1.74 GHz). The gain of the antenna also keeps above 4.19 dBic. Meanwhile, acceptable agreements can be obtained between the simulated and measured results. As such, the proposed CP antenna with wide beamwidth can be used in various navigation systems.
Citation
Li Wang, Xi Chen, Dan Wu, Long Yang, Guang Fu, and Xiao-Wei Shi, "A Novel Circularly Polarised Antenna with Wide Power and Axial-Ratio Beamwidth by Using Tilted Dipoles," Progress In Electromagnetics Research Letters, Vol. 69, 37-43, 2017.
doi:10.2528/PIERL17040701
References

1. Duan, X.-D. and R.-L. Li, "A novel center-fed dual-band circularly polarized antenna for GNSS application," Proc. IEEE Antennas Propag. Soc. Int. Symp. (APSURSI), 1015-1016, Memphis, TN, USA, 2014.

2. Tan, T.-S., Y.-L. Xia, and Q. Zhu, "A novel wide beamwidth and circularly polarized microtrip antenna loading annular dielectric superstrate with metal ring," Proc. IEEE Antennas Propag. Soc. Int. Symp. (APSURSI), 1883-1884, Memphis, TN, USA, 2014.

3. Nasimuddin, Y., S. Anjani, and A. Alphones, "A wide-beam circularly polarized asymmetric-microstrip antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3764-3768, 2015.
doi:10.1109/TAP.2015.2438397

4. Nasimuddin, N., A. Alphones, and S. Vignesh, "Stubs-integrated-microstrip antenna design for wide coverage of circularly polarized radiation," IET Microwaves, Antennas and Propagation, Vol. 11, No. 4, 44-449, 2017.

5. Luo, Y., Q.-X. Chu, and L. Zhu, "A low-profile wide-beamwidthcircularly-polarized antenna via twopairs of parallel dipoles in a squarecontour," IEEE Trans. Antennas Propag., Vol. 63, No. 3, 931-936, Mar. 2015.
doi:10.1109/TAP.2014.2387438

6. Liu, N.-W., L. Zhu, and W.-W. Choi, "Low-profile wide-beamwidth circularly-polarised patch antenna on a suspended substrate," IET Microwaves, Antennas and Propagation, Vol. 10, No. 8, 885-890, May 2016.
doi:10.1049/iet-map.2016.0081

7. Ng, K. B., C. H. Chan, and K. M. Luk, "Low-cost vertical patch antenna with wide axial-ratio beamwidth for handheld satellite communications terminals," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1417-1424, Apr. 2015.
doi:10.1109/TAP.2015.2403314

8. Su, C. W., S. K. Huang, and C. H. Lee, "CP microstrip antenna with wide beamwidth for GPS band application," Electron. Lett., Vol. 43, No. 30, 1-2, Sep. 2007.

9. Luo, Y., Q.-X. Chu, and L. Zhu, "A miniaturized wide-beamwidth circularly polarized planar antenna via two pairs of folded dipoles in a square contour," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3753-3759, Aug. 2015.
doi:10.1109/TAP.2015.2438334