Vol. 68
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-06-16
Analysis of Tuning Channel Filter Based on Ternary Lossy Defective Metallo-Dielectric Nano Photonic Crystal
By
Progress In Electromagnetics Research Letters, Vol. 68, 113-119, 2017
Abstract
In this paper, we design an optical filter by using one-dimensional (1D) ternary metallo-dielectric photonic crystal (PC). We use a dielectric defect layer between ternary asymmetric cells with this structure (ABC)NDM(ABC)N and also increase the number of dielectric defect layers. Then, we plot transmission spectra in terms of wavelength and different angles of incidence in transverse electric (TE) and transverse magnetic (TM) polarizations. We show defect modes and photonic band gap (PBG) on the plane of wavelength and incident angles in both TE and TM polarizations. We also plot transmission in the lossless structure and compared loss and lossless structures. Furthermore, we compare dielectric defect layer with metallic defect layer in both TE and TM polarizations. Moreover, we plot symmetric structure (ABC)NDM(CBA)N in TE and TM waves. The theoretical analysis shows that there is one defect mode which moves to the shorter wavelength by increasing angles of incidence in asymmetric structure. There are also two defect modes in symmetric structure, and by tuning angle of incidence this structure can be used as single channel filter in asymmetric structure and multichannel filter in symmetric structure.
Citation
Hadis Azarshab, and Abdolrasoul Gharaati, "Analysis of Tuning Channel Filter Based on Ternary Lossy Defective Metallo-Dielectric Nano Photonic Crystal," Progress In Electromagnetics Research Letters, Vol. 68, 113-119, 2017.
doi:10.2528/PIERL17040404
References

1. Sakoda, K., Optical Properties of Photonic Crystals, Springer-Verlag, 2001.
doi:10.1007/978-3-662-14324-7

2. Skorobogatiy, M. and J. Yang, Fundamentals of Photonic Crystal Guiding, Cambridge University Press, 2009.

3. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 1995.

4. Fan, S., P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B, Vol. 54, 11245-11252, 1994.
doi:10.1103/PhysRevB.54.11245

5. Szipocs, R., K. Ferencz, C. Spielmann, and F. Krausz, "Chirped multilayer coatings for broadband dispersion control in femtosecond lasers," Optics Letters, Vol. 19, 201-203, 1994.
doi:10.1364/OL.19.000201

6. Han, P. and H. Z.Wang, "Extension of omnidirectional reflection range in one-dimensional photonic crystals with staggered structure," J. Opt. Soc. Am. B, Vol. 20, 1996-2001, 2003.
doi:10.1364/JOSAB.20.001996

7. Usievich, B. A., A. M. Prokhorov, and V. A. Sychugov, "A photonic-crystal narrow-band optical filter," Laser Physics, Vol. 12, 898-902, 2002.

8. Awasthi, S. K. and S. P. Ojha, "Design of a tunable optical filter by using a one dimensional ternary photonic ban gap material," Progress In Electromagnetics Research M, Vol. 4, 117-132, 2008.
doi:10.2528/PIERM08061302

9. Gharaati, A. and A. Serajfard, "Analytical calculation of band gap of a 1D planar ternary photonic crystal by simulating with a symmetric lossless transmission line," Progress In Electromagnetics Research Letters, Vol. 28, 101-109, 2012.
doi:10.2528/PIERL11102007

10. Fink, Y., J. N. Winn, J. D. Joannopoulos, and L. E. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.
doi:10.1126/science.282.5394.1679

11. Gharaati, A. and H. Azarshab, "Characterization of defect modes in one-dimensional ternary metallo-dielectric nanolayered photonic crystal," Progress In Electromagnetics Research B, Vol. 37, 125-141, 2012.
doi:10.2528/PIERB11101410

12. Gharaati, A. and H. Azarshab, "Characterization of defect modes in one dimensional binary metallo-dielectric nanolayered photonic crystal," International Journal of Physics, Vol. 4, 149-162, 2011.

13. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Omni-direction reflection in one dimensional photonic crystal," Progress In Electromagnetics Research B, Vol. 7, 133-143, 2008.
doi:10.2528/PIERB08020601

14. Yeh, P., Optical Waves in Layered Media, Wiley, 2005.

15. Tang, K., Y. Xiang, and S.Wen, "Tunable transmission and defect mode in one-dimensional ternary left-handed photonic crystal," Proc. of SPIE, 60200S.1-60200S, 2005.

16. Skorobogatiy, M. and J. Yang, Fundamentals of Photonic Crystal Guiding, 132, Cambridge University Press, 2009.

17. Jackson, J. D., Classical Electrodynamics, 3rd Ed., 311, California University, 1999.

18. Wu, C. J., Y. H. Chung, and B. J. Syu, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
doi:10.2528/PIER10012004

19. Loschialpo, M. J. P. and J. Schelleng, "Photonic band gap structure and transmissivity of frequency-dependant metallic-dielectric systems," J. Appl. Phys., Vol. 88, 5785-5790, 2000.
doi:10.1063/1.1289045

20. Topasna, D. M. and G. A. Topasna, "Numerical modeling of thin film optical filters," J. Opt. Soc. Am. A, Education and Training in Optics and Photonics (ETOP), 230-239, July 5, 2009.

21. Malaviya, S. K. U. and S. P. Ojha, "Enhancement of omnidirectional total-reflection wavelength ranges by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Am. B: Optical Physics, Vol. 23, 2566-2571, 2006.

22. Born, M. and E. Wolf, Principles of Optics, Cambridge, 1999.
doi:10.1017/CBO9781139644181

23. Saleh, B. E. A. and M. C. Teich, Fundamentals of Photonics, Wiley, 2007.

24. Orfanidis, S. J., Electromagnetic Waves and Antennas, Rutgers University, 2008.

25. Yeh, P., Handbook of Optical Contents of Solids, Vol. 98, 1955.

26. Markos, P. and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left Handed Materials, Princeton University Press, 2008.