Vol. 59
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-08-05
Investigation of a Metamaterial Absorber by Using Reflection Theory Model
By
Progress In Electromagnetics Research M, Vol. 59, 65-73, 2017
Abstract
Metamaterial absorber (MMA), as a kind of new-style artificial absorption material, has been extensively researched and discussed. Currently, however, the research focuses mainly on the development and application of the novel structure MMA, and only little work is aimed at the physical mechanism of the MMA. In order to deeply understand the absorption mechanism, in this paper, the numerical simulation results of an MMA are given. Then, based on the reflection theory modal, the numerical simulation results are well discussed and explained in detail. It is found that the theoretical results agree well with that of the simulation, which suggests that the reflection theory modal is effective for analyzing the absorption mechanism of the MMA. The main contributions of this paper are to quantitatively discuss and explain the absorption mechanism of the MMA by using the reflection theory and thus offer a consultation in design and fabrication of the advanced MMA for engineers.
Citation
Cheng Yang, Han Xiong, and Xiao Pan Li, "Investigation of a Metamaterial Absorber by Using Reflection Theory Model," Progress In Electromagnetics Research M, Vol. 59, 65-73, 2017.
doi:10.2528/PIERM17033102
References

1. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

2. Parazzoli, C. G., R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett., Vol. 90, 2003.
doi:10.1103/PhysRevLett.90.107401

3. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 2000.
doi:10.1103/PhysRevLett.85.3966

4. Schurig, D. J., J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

5. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

6. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, 2002.
doi:10.1103/PhysRevLett.89.213902

7. Leonhardt, U. and T. Tyc, "Broadband invisibility by non-euclidean cloaking," Science, Vol. 323, 10-112, 2009.
doi:10.1126/science.1166332

8. Niesler, F. B. P., J. K. Gansel, S. Fischbach, and Wegener, "Metamaterial metal-based bolometers," Appl. Phys. Lett., Vol. 100, 2012.
doi:10.1063/1.4714741

9. Watts, C. M., X. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mater., Vol. 24, 98-120, 2012.

10. Marques, R., J. Martel, F. Mesa, and F. Medina, "Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides," Phys. Rev. Lett., Vol. 89, 2002.
doi:10.1103/PhysRevLett.89.183901

11. Wen, Q. Y., H.W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Appl. Phys. Lett., Vol. 95, 2009.

12. Shen, X. P., T. J. Cui, J. M. Zhao, H. F. Ma, W. X. Jiang, and H. Li, "Polarization-independent wide-angle triple-band metamaterial absorber," Opt. Express, Vol. 19, 2011.

13. Li, L., Y. Yang, and C. H. Liang, "A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes," J. Appl. Phys., Vol. 110, 2011.

14. Shen, X. P., Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, "Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation," Appl. Phys. Lett., Vol. 101, No. 15, 2012.
doi:10.1063/1.4757879

15. Sun, L. K., H. F. Cheng, Y. J. Zhou, and J. Wang, "Improvement on the wave absorbing property of a lossy frequency selective surface absorber using a magnetic substrate," Chin. Phys. B, Vol. 21, 2012.

16. Zhang, H. B., L. W. Deng, P. H. Zhou, L. Zhang, D. M. Cheng, H. Y. Chen, D. F. Liang, and L. J. Deng, "Low frequency needlepoint-shape metamaterial absorber based on magnetic medium," J. Appl. Phys., Vol. 113, 2013.
doi:10.1063/1.4801906

17. Xu, Y. Q., P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, "A wide-angle planar metamaterial absorber based on split ring resonator coupling," J. Appl. Phys., Vol. 110, 2011.

18. Kim, J., R. Soref, and W. R. Buchwald, "Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial," Opt. Express, Vol. 18, 17997-18002, 2010.
doi:10.1364/OE.18.017997

19. Liu, N., M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Lett., Vol. 10, 2342-2348, 2010.
doi:10.1021/nl9041033

20. Jiang, Z. H., S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, "Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating," ACS Nano, Vol. 5, 4641-4647, 2011.
doi:10.1021/nn2004603

21. Wang, J., Y. T. Chen, J. M. Hao, M. Yan, and M. Qiu, "Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared," J. Appl. Phys., Vol. 109, 2011.

22. Dai, L. and C. Jiang, "Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating," Opt. Express, Vol. 17, 20502-20504, 2009.
doi:10.1364/OE.17.020502

23. Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nat. Commun., Vol. 2, 2011.

24. Lin, C. H., R. L. Chern, and H. Y. Lin, "Polarization-independent broad-band nearly perfect absorbers in the visible regime," Opt. Express, Vol. 19, 415-424, 2011.
doi:10.1364/OE.19.000415

25. Han, Y., W. Q. Che, C. Christopoulos, and Y. M. Chang, "Investigation of thin and broadband capacitive surface-based absorber by the impedance analysis method," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, 22-26, 2015.
doi:10.1109/TEMC.2014.2358686

26. Bhattacharyya, S., S. Ghosh, and K. V. Srivastava, "Equivalent circuit model of an ultra-thin polarization-independent triple band metamaterial absorber," AIP Adv., Vol. 4, 2014.

27. Xu, X. H., G. M.Wang, M. Q. Qi, J. G. Liang, J. Q. Gong, and Z. M. Xu, "Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber," Phys. Rev. B, Vol. 86, 2012.
doi:10.1103/PhysRevB.86.155417

28. Chen, H. T., "Interference theory of metamaterial perfect absorbers," Opt. Express, Vol. 20, 7165-7172, 2012.
doi:10.1364/OE.20.007165

29. Kong, H., G. Li, Z. Jin, G. Ma, Z. Zhang, and C. Zhang, "Polarization-independent metamaterial absorber for terahertz frequency," Int. J. Infrared Milli. Waves, Vol. 33, 649-656, 2012.
doi:10.1007/s10762-012-9906-x

30. Grant, J., Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, "Polarization insensitive, broadband terahertz metamaterial absorber," Opt. Lett., Vol. 36, 3476-3478, 2011.
doi:10.1364/OL.36.003476

31. Huang, L., D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, "Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers," Appl. Phys. Lett., Vol. 101, 101-102, 2012.

32. Zhang, Z. H., Z. P. Wang, and L. H. Wang, "Design principle of single- or double-layer wave-absorbers containing left-handed materials," Mater. Des., Vol. 30, 3908-3912, 2009.
doi:10.1016/j.matdes.2009.03.021