Vol. 57
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-05-23
Measurements and Modeling of Path Loss Over Irregular Terrain for Near-Ground and Short-Range Communications
By
Progress In Electromagnetics Research M, Vol. 57, 55-62, 2017
Abstract
In this paper, radio wave propagation over irregular terrain is investigated in 200-600 MHz (VHF/UHF band). Measured results are compared with different path loss models such as Fresnel knife edge diffraction and uniform theory of diffraction (UTD). It is shown that, for low antenna heights, using a combination of the two-ray path loss model and knife-edge diffraction, great improvement in path loss prediction accuracy is achieved. The derived model is aimed to effectively predict path loss for near-ground and short-range communication applications.
Citation
Jiawei Zang, and Xuetian Wang, "Measurements and Modeling of Path Loss Over Irregular Terrain for Near-Ground and Short-Range Communications," Progress In Electromagnetics Research M, Vol. 57, 55-62, 2017.
doi:10.2528/PIERM17032806
References

1. Akyildiz, I. F., W. Su, Y. Sankarasubramaniam, and E. Cavirci, "Wireless sensor networks: A survey," Computer Networks, Vol. 38, No. 4, 393-422, 2002.
doi:10.1016/S1389-1286(01)00302-4

2. Joshi, G. G., C. B. Dietrich Jr., C. R. Anderson, W. G. Newhall, W. A. Davis, J. Isaacs, and G. Barnett, "Near-ground channel measurements over line-of-sight and forested paths," IEE Proc. - Microw. Antennas Propag., Vol. 152, No. 6, 589-596, 2005.
doi:10.1049/ip-map:20050013

3. Aslam, M. I. and S. A. Zekavat, "New channel path loss model for near-ground antenna sensor networks," IET Wirel. Sens. Syst., Vol. 2, No. 2, 103-107, 2012.
doi:10.1049/iet-wss.2011.0096

4. Martinez-Sala, A., J. M. Molina-Garcia-Pardo, E. Egea-Lodpez, J. Vales-Alonso, L. Juan-Llacer, and J. Garcia-Haro, "An accurate radio channel model for wireless sensor networks simulation," Journal of Communications and Networks, Vol. 7, No. 4, 401-407, 2005.
doi:10.1109/JCN.2005.6387982

5. Hampton, J. R., N. M. Merheb, W. L. Lain, D. E. Paunil, R. M. Shuford, and W. T. Kasch, "Urban propagation measurements for ground based communication in the military UHF band," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 644-654, 2006.
doi:10.1109/TAP.2005.863099

6. Miranda, J., R. Abrishambaf, T. Gomes, P. Goncalves, J. Cabral, A. Tavares, and J. Monteiro, "Path loss exponent analysis in wireless sensor networks: Experimental evaluation," 2013 11th IEEE International Conference on Industrial Informatics (INDIN), 54-58, 2013.
doi:10.1109/INDIN.2013.6622857

7. AISayyari, A., I. Kostanic, and C. E. Otero, "An empirical path loss model for wireless sensor network deployment in an arti cial turf environment," 2014 IEEE 11th International Conference on Networking, Sensing and Control (ICNSC), 637-642, 2014.

8. Andrusenko, J., R. L. Miller, J. A. Abrahamson, N. M. M. Emanuelli, R. S. Pattay, and R. M. Shuford, "VHF general urban path loss model for short range ground-to-ground communications," IEEE Trans. Antennas Propag., Vol. 56, No. 10, 3302-3310, 2008.
doi:10.1109/TAP.2008.929453

9. Alsayyari, A., I. Kostanic, and C. E. Otero, "An empirical path loss model for wireless sensor network deployment in a concrete surface environment," 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON), 1-6, 2015.

10. Rappaport, T., Wireless Communications: Principles and Practice, 2nd Ed., Prentice Hall PTR, 2001.

11. Luebbers, R., "Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss," IEEE Trans. Antennas Propag., Vol. 32, No. 1, 70-76, 1984.
doi:10.1109/TAP.1984.1143189

12. Kanatas, A. G., I. D. Kountouris, G. B. Kostaras, and P. Constantinou, "A UTD propagation model in urban microcellular environments," IEEE Trans. Veh. Technol., Vol. 46, No. 1, 185-193, 1997.
doi:10.1109/25.554751

13. Parson, J. D., The Mobile Radio Propagation Channel, 2nd Ed., Wiley, 2000.
doi:10.1002/0470841524

14. Lee, W. C., Mobile Communications Engineering, McGraw-Hill, 1982.

15. Blomquist, A. and L. Ladell, "Prediction and calculation of transmission loss in different types of terrain," NATO-AGARD Conf., Publ. CP-144, Res. Inst. Nat. Defense Dept. 3, S-10450, Stockholm 80, 1974.

16. Edwards, R. and J. Durkin, "Computer prediction of service areas for vhf mobile radio networks," IEEE Proc., Vol. 116, No. 9, 1493-1500, 1969.

17. Liu, P., D. W. Matolak, B. Ai, and R. Sun, "Path loss modeling for vehicle-to-vehicle communication on a slope," IEEE Trans. Veh. Technol., Vol. 63, No. 6, 2954-2958, 2014.
doi:10.1109/TVT.2013.2294721