Vol. 56
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-05-09
Horizontal Diffraction in Multiple Obstacles Using Parabolic Equation with Recursive Convolution Nonlocal Boundary Conditions
By
Progress In Electromagnetics Research M, Vol. 56, 179-187, 2017
Abstract
The accuracy of wave propagation prediction is very important in telecommunication network planning. The parabolic equation model has an advantage in computation efficiency and accuracy for wave propagation prediction. The recursive convolution nonlocal boundary condition has an advantage in improving the computational efficiency. In this paper, the recursive convolution nonlocal boundary conditions are extended to deal with the issue of horizontal diffraction loss in multiple obstacles. The validation is performed with experiments and the results show a good agreement.
Citation
Zan-Yu Ge, Guizhen Lu, Huai-Bao Xiao, Dongdong Zeng, and Abomakhleb Gheit, "Horizontal Diffraction in Multiple Obstacles Using Parabolic Equation with Recursive Convolution Nonlocal Boundary Conditions," Progress In Electromagnetics Research M, Vol. 56, 179-187, 2017.
doi:10.2528/PIERM17031507
References

1. Levy, M. F., Parabolic Equation Methods for Electromagnetic Wave Propagation, IEE Press, 2000.
doi:10.1049/PBEW045E

2. Donohue, D. J. and J. R. Kuttler, "Propagation model in over terrain using the parabolic wave equation," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 1, 824-827, 2001.

3. Wang, K. and Y. L. Long, "Propagation modeling over irregular terrain by the improved two-way parabolic equation method," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4467-4471, 2012.
doi:10.1109/TAP.2012.2207063

4. Huang, Z. X., Q. Wu, and X. L. Wu, "Solving multi-object radar cross section based on wide-angle parabolic equation method," Systems Engineering and Electronics, Vol. 17, No. 4, 722-724, 2006.
doi:10.1016/S1004-4132(07)60005-X

5. Chiou, M. M. and J. F. Kiang, "Simulation of X-band signals in a sand and dust storm with parabolic wave equation method and two-ray model," IEEE Antennas and Wireless Propagation Letters, No. 99, 2016.

6. Valtr, P., P. Pechac, V. Kvicera, and M. Grabner, "A radiowave propagation study in an urban environment using the fourier split-step parabolic equation," The Second European Conference on Antennas and Propagation, EuCAP 2007, 2007.

7. Aklilu, T. and G. Giorges, "Finite element and finite difference methods for elliptic and parabolic differential equations," Numerical Analysis - Theory and Application, Prof. Jan Awrejcewicz (Ed.), InTech, 2011, ISBN: 978-953-307-389-7.

8. Fadugba, S. E., O. H. Edogbanya, and S. C. Zelibe, "Crank Nicolson Method for solving parabolic partial differential equations," IJA2M, Vol. 1, No. 3, 8-23, 2013.

9. Silva, M. A. N., E. Costa, and M. Liniger, "Analysis of the effects of irregular terrain on radio wave propagation based on a three-dimensional parabolic equation," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 2138-2143, 2012.
doi:10.1109/TAP.2012.2186227

10. Sevgi, L., C. Uluisik, and F. Akleman, "A MATLAB-based two-dimensional parabolic equation radiowave propagation package," IEEE Antennas and Propagation Magazine, Vol. 47, No. 4, 164-175, 2005.
doi:10.1109/MAP.2005.1589923

11. Bai, R. J., C. Liao, N. Sheng, and Q. H. Zhang, "Prediction of wave propagation over digital terrain by parabolic equation model," IEEE International Symposium on MAPE, Oct. 29-31, 2013.

12. Keefe, K., "Dispersive waves and PML performance for large-stencil differencing in the parabolic equation," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 11, 5268-5277, 2012.
doi:10.1109/TAP.2012.2208090

13. Zhang, P., L. Bai, Z. Wu, and F. Li, "Effect of window function on absorbing layers top boundary in parabolic equation," Antennas and Propagation (APCAP), Jul. 26-29, 2014.

14. Dalrymple, R. A. and P. A. Martin, "Perfect boundary conditions for parabolic water-wave models," Proc. R. Soc. London A, Vol. 437, 41-54, 1992.
doi:10.1098/rspa.1992.0045

15. Zebic-Le Hyaric, A., "Wide-angle nonlocal boundary conditions for the parabolic wave equation," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 6, 916-922, 2001.
doi:10.1109/8.931149

16. Mias, C., "Fast computation of the nonlocal boundary condition in finite difference parabolic equation radiowave propagation simulations," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1699-1705, 2008.
doi:10.1109/TAP.2008.923341

17. Claerbout, J. F., Fundamentals of Geophysical Data Processing with Application to Petroleum Prospect, McGraw-Hill Press, 1976.

18. Mardeni, R. and K. F. Kwan, "Optimization of hata propagation prediction model in suburban area in Malaysia," Progress In Electromagnetics Research C, Vol. 13, 91-106, 2010.

19. Chang, W. and L. Tsang, "A partial coherent physical model of third and fourth Stokes parameters of Sastrugi snow surfaces over layered media with rough surface boundary conditions of conical scattering combined with vector radiative transfer theory," Progress In Electromagnetics Research B, Vol. 45, 57-82, 2012.
doi:10.2528/PIERB12081514

20. Ye, H. and Y. Q. Jin, "Parameterization of the tapered incident wave for numerical simulation of electromagnetic scattering from rough surface," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 3, 1234-1237, 2005.
doi:10.1109/TAP.2004.842586