Vol. 69
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-06-30
Merged Characteristic Basis Function Method for Analysis of Electromagnetic Scattering Characteristics from Conducting Targets
By
Progress In Electromagnetics Research Letters, Vol. 69, 15-21, 2017
Abstract
In this paper, a merged characteristic basis function method (MCBFM) is proposed to analyze the electromagnetic scattering characteristics from conducting targets. A merged characteristic basis function (M-CBF) is newly defined in the MCBFM. Considering the mutual interaction of surrounding blocks, the M-CBF is generated by merging the conventional secondary characteristic basis functions (SCBFs) and the high order characteristic basis functions (HO-CBFs) of each block in the conventional primary characteristic basis function (PCBF). Thus, the true current distribution of the targets is approached by using a single M-CBF reducing the number of CBFs when the incident plane waves (PWs) are certain. The numerical results of a PEC hexahedron demonstrate that the proposed MCBFM improves the accuracy without increasing the number of PWs and the CBFs compared to the improved primary CBFM (IP-CBFM). The results also demonstrate that the MCBFM is capable of effectively reducing the CPU time by 63.38% without losing any accuracy compared to the conventional characteristic basis function method (CBFM). Other results of a PEC cylinder demonstrate that when a considerable computational accuracy is required, the efficiency of the proposed MCBFM is the highest among these three methods.
Citation
Chenlu Li, Yufa Sun, and Guohua Wang, "Merged Characteristic Basis Function Method for Analysis of Electromagnetic Scattering Characteristics from Conducting Targets," Progress In Electromagnetics Research Letters, Vol. 69, 15-21, 2017.
doi:10.2528/PIERL17031501
References

1. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas and Propagation Magazine, Vol. 35, No. 3, 7-12, 1993.
doi:10.1109/74.250128

2. Song, J. M. and W. C. Chew, "Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic," Microwave and Optical Technology Letters, Vol. 10, 14-19, 1995.
doi:10.1002/mop.4650100107

3. Song, J., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Tansactions on Antennas and Propagation, Vol. 45, 1488-1493, 1997.
doi:10.1109/8.633855

4. Prakash, V. V. S. and R. Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equations," Microwave and Optical Technology Letters, Vol. 36, 95-100, 2003.
doi:10.1002/mop.10685

5. Sun, Y. F., C. H. Chan, and R. Mittra, "Characteristic basis function method for solving large problems arising in dense medium scattering," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 1068-1071, 2003.

6. Tanaka, T., Y. Nishioka, and Y. Inasawa, "Verification of the PMCHWT-CBFM for scattering analysis of a microstrip array antenna," The 8th European Conference on Antennas and Propagation, 3232-3236, 2014.
doi:10.1109/EuCAP.2014.6902517

7. Tiberi, G., M. Degiorgi, and A. Monorchio, "A class of physical optics-SVD derived basis functions for solving electromagnetic scattering problems," IEEE Antennas and Propagation Society International Symposium, 143-146, 2005.

8. Degiorgi, M., G. Tiberi, and A. Monorchio, "An SVD-based method for analyzing electromagnetic scattering from plates and faceted bodies using physical optics bases," IEEE Antennas and Propagation Society International Symposium, 147-150, 2005.

9. Maaskant, R., R. Mittra, and A. Tijhuis, "Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm," IEEE Transactions on Antennas and Propagation, Vol. 56, 3440-3451, 2009.

10. De Gregorio, M., G. Tiberi, and A. Monorchio, "Solution of wide band scattering problems using the characteristic basis function method," IET Microwaves Antennas and Propagation, Vol. 6, 60-66, 2012.
doi:10.1049/iet-map.2011.0309

11. Lucente, E., A. Monorchio, and R. Mittra, "An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 56, 999-1007, 2008.
doi:10.1109/TAP.2008.919166

12. Wang, Z. G., Y. F. Sun, and G. H.Wang, "Fast analyses of electromagnetic scatteringcharacteristics from conducting targets using improved and the adaptive cross approximation algorithm," Acta Physica Sinica, Vol. 62, 204102, 2013.

13. Hay, S. G., J. D. O’Sullivan, and A. Mittra, "Connected patch array analysis using the characteristic basis function method," IEEE Transactions on Antennas and Propagation, Vol. 59, 1828-1837, 2011.
doi:10.1109/TAP.2011.2123867

14. Konno, K. and Q. Chen, "The numerical analysis of an antenna near a dielectric object using the higher-order characteristic basis function method combined with a volume integral equation," IEICE Transactions on Communications, Vol. E97B, 2066-2073, 2014.
doi:10.1587/transcom.E97.B.2066

15. Tanaka, T., Y. Inasawa, and Y. Nishioka, "Improved primary characteristic basis function method for monostatic radar cross section analysis of specific coordinate plane," IEICE Transactions on Electronics, Vol. E99C, 28-35, 2016.
doi:10.1587/transele.E99.C.28