Vol. 57
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-06-04
Bridge Detection in High-Resolution X-Band SAR Images by Combined Statistical and Topological Features
By
Progress In Electromagnetics Research M, Vol. 57, 91-102, 2017
Abstract
This article takes account of the radiation feature of rivers in synthetic aperture radar (SAR) images and proposes a novel automatic approach to detect highway bridges by combining statistical and topology features. The proposed method consists of two steps. In the river-extraction stage, the classification techniques are applied to water extraction according to the statistical and gray-leveled features. In the bridge-extraction stage, bridges are then detected in this binary image by using a topology-based approach. Experimental results show that the proposed method can be implemented with high-precision highway-bridge extraction, feature analysis, and bridge recognition.
Citation
Meng Yang, and Zhihua Jian, "Bridge Detection in High-Resolution X-Band SAR Images by Combined Statistical and Topological Features," Progress In Electromagnetics Research M, Vol. 57, 91-102, 2017.
doi:10.2528/PIERM17030804
References

1. Isernia, T., A. Massa, A. F. Morabito, and P. Rocca, "On the optimal synthesis of phase-only reconfigurable antenna arrays," European Conf. Antennas and Propagation, 2074-2077, 2011.

2. Qin, F., S. Gao, Q. Luo, C. Mao, C. Gu, G. Wei, J. Xu, J. Li, C. Wu, K. Zheng, and S. Zheng, "A simple low-cost shared-aperture dual-band dual-polarized high-gain antenna for synthetic aperture radars," IEEE Trans. Antennas Propagation, Vol. 64, No. 7, 2914-2922, 2016.
doi:10.1109/TAP.2016.2559526

3. Lv, W., W. Yu, J. Wang, and K. Wang, "Automatic bridge detection in SAR images based on fuzzy support vector machine and distance space," IEEE CIE Int. Conf. Radar, Vol. 2, 1847-1849, 2011.

4. Zhang, J. and G. Sun, "Recognition of bridge over water in remote sensing image using discrete hopfield neural network," IEEE Int. Conf. Transportation, Mechanical, and Electrical Engineering, 439-442, 2011.

5. Song, W. Y., S. H. Rho, and Y. K. Kwag, "Automatic bridge detection scheme using CFAR detector in SAR images," Proc. Int. Asia-Pacific Conf. on Synthetic Aperture Radar, 1-4, 2011.

6. Xiong, W., J. Zhong, and L. Cao, "An approach of bridge detection over water in high resolution SAR image," IET Int. Radar Conf., Vol. 5, 1-4, 2013.

7. Yin, D. and R. Zhang, "Research on the recognition method of bridge target in SAR image," IEEE Int. Conf. Comput. Inf. Technol., 1403-1406, 2010.

8. Wu, T., Q. Ren, X. Chen, L. Niu, and X. Ruan, "Highway bridge detection based on PCA fusion in airborne multiband high resolution SAR images," Int. Symposium on Image and Data Fusion, 1-4, 2011.

9. Zhu, H., C. Li, L. Zhang, and J. Shen, "River channel extraction from SAR images by combining gray and morphological features," Circuits Systems Signal Process., Vol. 34, No. 7, 2271-2286, 2015.
doi:10.1007/s00034-014-9922-2

10. Carson, C., S. Belongie, H. Greenspan, and J. Malik, "Blobworld: Image segmentation using expectation-maximization and its application to image querying," IEEE Trans. Pattern Anal. Mach. Intell., Vol. 24, No. 8, 1026-1038, 2002.
doi:10.1109/TPAMI.2002.1023800

11. Nguyen, T. M. and Q. M. Wu, "Gaussian-mixture-model-based spatial neighborhood relationships for pixel labeling problem," IEEE Trans. Syst., Man, Cybern. B, Cybern., Vol. 42, No. 1, 193-202, 2012.
doi:10.1109/TSMCB.2011.2161284

12. Kwon, O., "Single image dehazing based on hidden Markov random field and expectation-maximisation," Electron. Lett., Vol. 50, No. 20, 1442-1444, 2014.
doi:10.1049/el.2014.2093

13. Chen, Q., L. Zhao, J. Lu, G. Kuang, N. Wang, and Y. Jiang, "Modified two-dimensional Otsu image segmentation algorithm and fast realisation," IET Image Process., Vol. 6, No. 4, 426-433, 2012.
doi:10.1049/iet-ipr.2010.0078

14. Fabbrini, L., M. Greco, M. Messina, and G. Pinelli, "Improved edge enhancing diffusion filter for speckle-corrupted images," IEEE Geosci. Remote Sens. Lett., Vol. 11, No. 1, 119-123, 2014.
doi:10.1109/LGRS.2013.2247377

15. Yang, M. and G. Zhang, "A novel ship detection method of SAR images based on nonlinear diffusion filtering and Gaussian curvature," Remote Sens. Lett., Vol. 7, No. 3, 211-219, 2016.
doi:10.1080/2150704X.2015.1126374

16. Chaudhuri, D. and A. Samal, "An automatic bridge detection technique for multispectral images," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 9, 2720-2727, 2008.
doi:10.1109/TGRS.2008.923631

17. Hedman, K., U. Stilla, G. Lisini, and P. Gamba, "Road network extraction in VHR SAR images of urban and suburban area by means of class-aided feature-level fusion," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 3, 1294-1296, 2010.
doi:10.1109/TGRS.2009.2025123

18. He, C., Z. Liao, F. Yang, X. Deng, and M. Liao, "Road extraction from SAR imagery based on multiscale geometric analysis of detector responses," IEEE J. Sel. Topics Appl. Earth Observ., Vol. 5, No. 5, 1373-1382, 2012.
doi:10.1109/JSTARS.2012.2219614

19. Lu, P., K. Du, W. Yu, R. Wang, Y. Deng, and T. Balz, "A new region growing-based method for road network extraction and its application on different resolution SAR images," IEEE J. Sel. Topics Appl. Earth Observ., Vol. 7, No. 12, 4772-4783, 2014.
doi:10.1109/JSTARS.2014.2340394

20. Popescu, A. A., I. Gavat, and M. Datcu, "Contextual descriptors for scene classes in very high resolution SAR images," IEEE Geosci. Remote Sens. Lett., Vol. 9, No. 1, 80-84, 2012.
doi:10.1109/LGRS.2011.2160838