Vol. 69
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-07-14
A New Multi-Functional Half Mode Substrate Integrated Waveguide Six-Port Microwave Component
By
Progress In Electromagnetics Research Letters, Vol. 69, 71-78, 2017
Abstract
By attention to price of microwave components and need to use of them in many applications, the creation of an integrated component which can incorporate the performances of several components in one structure is a necessity. Therefore, in this paper a novel symmetric six-ports multi-functional microwave component is designed and realized. The proposed component consists of two modified half mode substrates integrated waveguide couplers which are joined and a slot which is attained from joined two mentioned couplers. Despite the slot prevents the exciting of higher order modes in proposed component, it divides signal in two parts by exciting middle SIW ports. By exciting each of the ports as input, the component can act as an equal and an unequal 90-degree couplers or power dividers. The proposed component with mentioned conditions covers 23.5% frequency bandwidth with maximum magnitude and phase error of ±0.7 dB and ±0.63 degree, respectively.
Citation
Saeid Karamzadeh, Vahid Rafiei, and Hasan Saygin, "A New Multi-Functional Half Mode Substrate Integrated Waveguide Six-Port Microwave Component," Progress In Electromagnetics Research Letters, Vol. 69, 71-78, 2017.
doi:10.2528/PIERL17030602
References

1. Wu, K., D. Deslandes, and Y. Cassivi, "The substrate integratedcircuits a new concept for high-frequency electronics and optoelectronics," Proc. 6th Int. Conf. Telecommun. Modern Sat., Cable Broadcasting Service (TELSIKS), PIII-PX, 2003.

2. Sakakibara, Y. K., A. Akiyama, J. Hirokawa, M. Ando, and N. Goto, "Alternating phase-fed waveguide slot arrays with a single-layer multiple-way power divider," Proc. Inst. Elect. Eng., Vol. 144, 425-430, 1997.

3. Zeid, A. and H. Baudrand, "Electromagnetic scattering by metallic holes and its applications in microwave circuit design," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 4, 1198-1206, Apr. 2002.
doi:10.1109/22.993425

4. Hong, W., B. Liu, Y. Q. Wang, Q. H. Lai, and K. Wu, "Half mode substrate integrated waveguide: A new guided wave structure for microwave and millimeter wave application," Proc. Joint 31st Int. Conf. Infrared Millim. Waves 14th Int. Conf. Terahertz Electron., 219, Shanghai, China, Sep. 18-22, 2006.

5. Christopher, S. and V. A. Abid Hussain, "Design aspects of compact high power multiport unequal power dividers," IEEE International Symposium on Phased Array Systems and Technology, 1996, 63-67, Oct. 15-18, 1996.

6. Liu, B., W. Hong, Y. Q. Wang, Q. H. Lai, and K. Wu, "Half Mode Substrate Integrated Waveguide (HMSIW) 3-dB coupler," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 1, 22-24, Jan. 2007.
doi:10.1109/LMWC.2006.887244

7. Ali, A., H. Aubert, N. Fonseca, and F. Coccetti, "Wideband two-layer SIW coupler: Design and experiment," Electronics Letters, Vol. 45, No. 13, 687-689, Jun. 18, 2009.
doi:10.1049/el.2009.0464

8. Ali, A. A. M., H. B. El-Shaarawy, and H. Aubert, "Compact wideband double-layer half-mode substrate integrated waveguide 90◦ deg coupler," Electronics Letters, Vol. 47, No. 10, 598-599, May 12, 2011.
doi:10.1049/el.2011.0529

9. Djerafi, T., K. Wu, and S. O. Tatu, "3 dB 90◦ hybrid quasi-optical coupler with air field slab in SIW technology," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 4, 221-223, Apr. 2014.
doi:10.1109/LMWC.2013.2295297

10. Djerafi, T. and K. Wu, "Super-compact substrate integrated waveguide cruciform directional coupler," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 11, 757-759, Nov. 2007.
doi:10.1109/LMWC.2007.908040

11. Guan, D.-F., Z.-P. Qian, Y.-S. Zhang, and Y. Cai, "A hybrid SIW and GCPW guided-wave structure coupler," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 8, 518-520, Aug. 2014.
doi:10.1109/LMWC.2014.2321497