Vol. 68
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-05-11
An Efficient Localization Method Using Signal Reconstruction
By
Progress In Electromagnetics Research Letters, Vol. 68, 9-16, 2017
Abstract
This paper considers the localization of an emitter where the transmitted signal is unknown for receivers. To improve the localization accuracy, we propose an efficient method to estimate the emitter position by reconstructing the transmitted signal jointly. Simulation results show that the localization performance of the proposed method is much better than the existing algorithms.
Citation
Limin Che, "An Efficient Localization Method Using Signal Reconstruction," Progress In Electromagnetics Research Letters, Vol. 68, 9-16, 2017.
doi:10.2528/PIERL17030201
References

1. So, H. C., "Source localization: algorithms and analysis," Handbook of Position Location: Theory, Practice, and Advances, 25-66, 2011.
doi:10.1002/9781118104750.ch2

2. Wu, Y. T., H. C. So, C. H. Hou, and J. Li, "Passive localization of near-field sources with a polarization sensitive array," IEEE Trans. Antennas and Propagation, Vol. 55, No. 8, 2402-2408, Aug. 2007.
doi:10.1109/TAP.2007.901912

3. Amar, A., A. J. Weiss, and , "Localization of radio emitters based on Doppler frequency shifts," IEEE Trans. Signal Process., Vol. 56, No. 11, 5500-5508, Nov. 2008.
doi:10.1109/TSP.2008.929655

4. Zhang, S. K., H. J. Jiang, and K. H. Yang, "Detection and localization for an unknown emitter using TDOA measurements and sparsity of received signals in a synchronized wireless sensor network," EEE ICASSP, 5146-5149, May 2013.

5. Jean, O. and A. J. Weiss, "Passive localization and synchronization using arbitrary signals," IEEE Trans. Signal Process., Vol. 62, No. 8, Apr. 2014.

6. Bar-Shalom, O. and A. J. Weiss, "Emitter geolocation using single moving receiver," Signal Process., Vol. 105, 70-83, Dec. 2014.
doi:10.1016/j.sigpro.2014.05.006

7. Bar-Shalom, O. and A. J. Weiss, "Direct emitter geolocation under local scattering," Signal Process., Vol. 117, 102-114, May 2015.
doi:10.1016/j.sigpro.2015.05.003

8. Lui, K. W. K., F. K. W. Chan, and H. C. So, "Accurate time delay estimation based passive localization," Signal Process., Vol. 89, No. 9, 1835-1838, Mar. 2009.
doi:10.1016/j.sigpro.2009.03.009

9. Yang, K., G. Wang, and Z. Q. Luo, "Efficient convex relaxation methods for robust target localization by a sensor network using time differences of arrials," IEEE Trans. Signal Process., Vol. 57, No. 7, 2775-2784, Jul. 2009.
doi:10.1109/TSP.2009.2016891

10. Torrieri, D. J., "Statistical theory of passive location systems," IEEE Trans. Aerosp. Electron. Syst., Vol. 20, No. 2, 183-198, Mar. 1984.
doi:10.1109/TAES.1984.310439

11. Chestnut, P. C., "Emitter location accuracy using TDOA and difference doppler," IEEE Trans. Aerosp. Electron. Syst., Vol. 18, No. 2, 214-218, Mar. 1982.
doi:10.1109/TAES.1982.309230

12. Wax, M. and T. Kailath, "Optimum localization of multiple sources by passive arrays," IEEE Trans. Acoustics, Speech, and Signal Process., Vol. 31, No. 5, 1210-1217, 1983.
doi:10.1109/TASSP.1983.1164183

13. Weiss, A. J., "Direct position determination of narrowband radio frequency transmitters," IEEE Signal Process. Lett., Vol. 11, No. 5, 513-516, May 2004.
doi:10.1109/LSP.2004.826501

14. Bialer, O. and A. J. Weiss, "Maximum likelihood direct position estimation in dense multipath," IEEE Trans. Vehicular Technol., Vol. 62, No. 5, 2069-2079, Jun. 2013.
doi:10.1109/TVT.2012.2236895

15. Weiss, A. J. and A. Amar, "Direct position determination of multiple radio signals," EURASIP. Journal Applied Signal Process., 37-49, Jan. 200.

16. Reuven, A. M. and A. J. Weiss, "Direct position determination of cyclostationary signals," Signal Process., Vol. 89, No. 12, 2448-2464.
doi:10.1016/j.sigpro.2009.04.009

17. Oispuu, M. and U. Nickel, "Direct detection and position determination of multiple sources with intermittent emission," Signal Process., Vol. 90, No. 12, 3056-3064, Dec. 2010.
doi:10.1016/j.sigpro.2010.05.010

18. Schonhoff, T. and A. A. Giordano, "Detection and estimation theory and its applications," Pearson College Division, 2006.

19. Diamantaras, K. I. and S. Y. Kung, "Principal Component Neural Networks: Theory and Applications," John Wiley & Sons, 1996.

20. Karhunen, K., "Zur spektraltheorie stochastischer prozesse," Annales Academiae Scientiarum Fennicae, Vol. 37, 1946.

21. Jollife, I. T., Principal Component Analysis, Springer-Verlag, 1986.
doi:10.1007/978-1-4757-1904-8

22. Hotelling, H., "Analysis of a complex of statistical variables into principal components," Journal of Educational Psychology, Vol. 24, 417-441, 1933.
doi:10.1037/h0071325

23. Jackson, J. E., A User's Guide to Principal Components, John Wiley & Sons, 1991.
doi:10.1002/0471725331

24. Hua, Y., M. Nikpour, and P. Stoica, "Optimal reduced-rank estimation and filtering," IEEE Trans. Signal Process., Vol. 49, No. 3, 457-469, Mar. 2001.
doi:10.1109/78.905856

25. Sameni, R., C. Jutten, and M. B. Shamsollahi, "A deflation procedure for subspace decomposition," IEEE Trans. Signal Process., Vol. 58, No. 4, 2363-2374, Apr. 2010.
doi:10.1109/TSP.2009.2037353

26. Alphonse, S. and G. A. Williamson, "Estimation of radar signals using passive sensor network," IEEE Radar Conference, 1525-1530, May 2015.