1. Demosthenous, P., C. Pitris, and J. Georgiou, "Infrared fluorescence-based cancer screening sapsule for the small intestine," IEEE Transactions on Biomedical Circuits and Systems, Vol. 10, 467-475, 2016.
doi:10.1109/TBCAS.2015.2449277
2. Lee, C., H. Choi, G. Go, S. Jeong, S. Y. Ko, J.-O. Park, et al. "Active locomotive intestinal capsule endoscope (ALICE) system: A prospective feasibility study," IEEE/ASME Transactions on Mechatronics, Vol. 20, 2067-2074, 2015.
doi:10.1109/TMECH.2014.2362117
3. Luo, Y. H.-L. and L. da Cruz, "The Argus® II retinal prosthesis system," Progress in Retinal and Eye Research, Vol. 50, 89-107, 2015.
doi:10.1016/j.preteyeres.2015.09.003
4. Bradshaw, P. J., P. Stobie, M. W. Knuiman, T. G. Briffaa, and M. S. Hobbs, "Life expectancy after implantation of a first cardiac permanent pacemaker (1995-2008): A population-based study," International Journal of Cardiology, Vol. 190, 42-46, 2015.
doi:10.1016/j.ijcard.2015.04.099
5. Sun, T. J., X. Xie, G. L. Li, Y. K. Gu, Y. D. Deng, and Z. H. Wang, "Integrated omnidirectional wireless power receiving circuit for wireless endoscopy," Electronics Letters, Vol. 48, 907-908, 2012.
doi:10.1049/el.2012.1687
6. Yang, Y., X. Li, and Y. Gao, , inventor, Xi'an Hongli patent office, assigned, Implantable visual prosthesis nerve stimulator, China patent CN201210402679.8, Oct. 22, 2012.
7. Bahrami, H., S. Abdollah Mirbozorgi, L. A. Rusch, and B. Gosselin, "Biological channel modelling and implantable UWB antenna design for neural recording systems," IEEE Transactions on Biological Engineering, Vol. 62, 88-98, 2015.
doi:10.1109/TBME.2014.2339836
8. Li, X., C.-Y. Tsui, and W.-H. Ki, "A 13.56 MHz wireless power transfer system with reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices," IEEE Journal of Solid-State Circuits, Vol. 50, 978-989, 2015.
doi:10.1109/JSSC.2014.2387832
9. Ba, A., M. Vidojkovic, K. Kanda, N. F. Kiyani, M. Lont, X. Huang, et al. "A 0.33 nJ/bit IEEE802.15.6/proprietary MICS/ISM wireless transceiver with scalable data rate for medical implantable applications," IEEE Journal of Biomedical and Health Informatics, Vol. 19, 920-929, 2015.
doi:10.1109/JBHI.2015.2414298
10. Cruz, H., H.-Y. Huang, S.-Y. Lee, and C.-H. Luo, "A 1.3 mW low-IF, current-reuse, and current-bleeding RF front-end for the MICS band with sensitivity of -97 dBm," IEEE Transactions on Circuits and System, Vol. 62, 1627-1636, 2015.
doi:10.1109/TCSI.2015.2415179
11. Alrawashdeh, R. S., Y. Huang, M. Kod, and A. A. B. Sajak, "A broadband flexible implantable loop antenna with complementary split ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1506-1509, 2015.
doi:10.1109/LAWP.2015.2403952
12. Alisoy, H. Z., S. Barlaz Us, and B. B. Alagoz, "An FDTD based numerical analysis of microwave propagation properties in a skin-fat tissue layers," Optik, Vol. 124, 5218-5224, 2013.
doi:10.1016/j.ijleo.2013.03.085
13. Ha, S.-G., J. Cho, J. Choi, H. Kim, and K.-Y. Jung, "FDTD dispersive modeling of human tissues based on quadratic complex rational function," IEEE Transactions on Antennas and Propagation, Vol. 61, 996-999, 2013.
doi:10.1109/TAP.2012.2223448
14. Karwowski, A., "Improving accuracy of FDTD simulations in layered biological tissues," IEEE Microwave and Wireless Components Letters, Vol. 14, 151-152, 2004.
doi:10.1109/LMWC.2004.827103
15. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine & Biology, Vol. 41, No. 11, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002
16. Stratton, J. A., Electromagnetic Theory, McGraw-Hill Book Company Inc, 1941.
17. Khaleghi, A., R. Chavez-Santiago, and I. Balasingham, "Ultrawideband pulse-based data communications for medical implants," IET Communications, Vol. 4, 1889-1897, 2010.
doi:10.1049/iet-com.2009.0692
18. Chae, M. S., Z. Yang, M. R. Yuce, L. Hoang, and W. Liu, "A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter," IEEE Transactions on Neural System and Rehabilitation Engineering, Vol. 17, 312-321, 2009.
doi:10.1109/TNSRE.2009.2021607
19. Li, X., Y. Yang, Y. Gao, and S. Qiao, "Visual prosthesis wireless power transfer system modeling based on biological capacitance and its efficiency-optimization," Acta Electronica Sinica, Vol. 43, 104-110, 2015.
20. Li, X., Y. Yang, and Y. Gao, "Visual prosthesis wireless energy transfer system optimal modelling," BioMedical Engineering Online, Vol. 13, 1-11, 2014.