Vol. 56
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-04-14
Multiphysics Model of Iron Powder Compacts for Efficient Microwave Processing
By
Progress In Electromagnetics Research M, Vol. 56, 11-23, 2017
Abstract
A generalized multiphysics model using COMSOL Multiphysics software for optimizing the sintering process of iron powders having various green densities is developed. The modeling is facilitated by designing a 30 GHz multimode applicator, where the test sample is placed for the microwave processing. The effective dielectric and magnetic properties of the resultant metal powder compact is estimated using the effective electromagnetic model considering the idea of core - shell particle approach followed by the Lichtenecker's mixture formula. A theoretical approach relating the penetration depth, proper impedance matching and volume fraction of different density powder compacts is also discussed here. From the study, it is clear that the effective dielectric, magnetic, and thermal properties all contribute to the microwave sintering process of metal powders.
Citation
Jutika Devi, Mohammad Jaleel Akhtar, and Pranayee Datta, "Multiphysics Model of Iron Powder Compacts for Efficient Microwave Processing," Progress In Electromagnetics Research M, Vol. 56, 11-23, 2017.
doi:10.2528/PIERM17021306
References

1. Oliveira, D. B., E. J. Silva, J. J. S. Santos, and O. M. Neto, "Design of a microwave applicator for water sterilization using multiobjective optimization and phase control scheme," IEEE Transactions on Magnetics, Vol. 47, No. 5, 1242-1245, 2011.
doi:10.1109/TMAG.2010.2073454

2. Aripin, H., S. Mitsudo, I. Nyoman Sudiana, S. Tani, K. Sako, Y. Fujii, T. Saito, T. Idehara, and S. Sabchevski, "Rapid sintering of silica xerogelceramic derived from sago waste ash using sub-millimeter wave heating with a 300 GHz cwgyrotron," J. Infrared Milli. Terahz Waves, Vol. 32, 867-876, 2011.
doi:10.1007/s10762-011-9797-2

3. Takayama, S., G. Link, S. Miksch, J. Ichikawa, and M. Thumm, "Millimetre wave effects of sintering behaviour of metal powder compacts," Powder Metallurgy, Vol. 49, No. 3, 274-280, 2006.
doi:10.1179/174329006X110835

4. Bykov, Yu. V., K. I. Rybakov, and V. E. Semenov, "High-temperature microwave processing of materials," Topical Review, J. Phys. D: Appl. Phys., Vol. 34, R55-R75, 2001.
doi:10.1088/0022-3727/34/13/201

5. Hoshizuki, H., S. Mitsudo, T. Saji, K. Matsuura, T. Idehara, M. Glyavin, A. Eremeev, T. Honda, A. Kitano, J. Ishibashi, Y. Iwai, and H. Nishi, "High temperature thermal insulation system for millimeter wave sintering of B4C," International Journal of Infrared and Millimeter Waves, Vol. 26, No. 11, 1531-1541, 2005.
doi:10.1007/s10762-005-0030-z

6. Luo, J., et al. "Theory and experiments of electromagnetic loss mechanism for microwave heating of powdered metals," Applied Physics Letters, Vol. 84, 5076-5078, 2004.
doi:10.1063/1.1713032

7. Birnboim, A., et al. "Comparative study of microwave sintering of Zinc oxide at 2.45, 30, and 83 GHz," J. Am. Ceram. Soc., Vol. 81, No. 6, 1493-1501, 1998.
doi:10.1111/j.1151-2916.1998.tb02508.x

8. Karch, J., R. Biirringer, and H. Gleiter, "Ceramics ductile at low temperature," Nature, Vol. 330, 556-558, 1987.
doi:10.1038/330556a0

9. Takayama, S., G. Link, M. Sato, and M. Thumm, "Sintering of metal powder samples with millimetre wave technology," IEEE Plasma and Industrial Applications, P2.67, 2004.

10. Metaxas, A. C. and R. J. Meredith, "Industrial microwave heating," IEE Power and Engineering Series 4, London, UK, 1998.

11. Ebara, H., T. Inoue, and O. Hashimoto, "Measurement method of complex permittivity and permeability for a powdered material using a waveguide in microwave band," Science and Technology of Advanced Materials, Vol. 7, 77-83, 2006.
doi:10.1016/j.stam.2005.11.019

12. Larsson, C., D. Sjoberg, L. Elmkrist, et al. "Waveguide measurements of the permittivity and permeability of temperature upto 1000˚," CODEN: LUTEDX/(TEAT-7196), Gerhard Kristensson, editior, 1-22, 2010.

13. Link, G., L. Feher, and M. Thumm, "Sintering of advanced ceramics using a 30 GHz, 10-kW, CW industrial gyrotron," IEEE Transactions on Plasma Science, Vol. 27, No. 2, 547-554, 1999.
doi:10.1109/27.772284

14. COMSOL Multiphysics software, , , Stockholm, Sweden, available: http://www.comsol.com.

15. Harrington, R. F., Time-harmonic Electromagnetic Fields, an IEEE Press Classic Reissue, 2001.
doi:10.1109/9780470546710

16. Meredith, R., Engineers’ Handbook of Industrial Microwave Heating, 1998.
doi:10.1049/PBPO025E

17. Akhtar, M. J., L. E. Feher, and M. Thumm, "A waveguide based two-step approach for measuring complex permittivity tensor of uniaxial composite materials," IEEE Transactions of Microwave Theory and Techniques, Vol. 54, No. 5, 2011-2022, 2006.
doi:10.1109/TMTT.2006.873623

18. Cheng, D. K., Field and Wave Electromagnetic, 2nd Ed., Pearson, 1989.

19. Buchelnikov, V. D., D. V. Louzguine-Luzgin, G. Xie, S. Li, N. Yoshikawa, et al. "Heating of metallic powders by microwave: Experiment and theory," J. Appl. Phys., Vol. 104, 113505, 2008.
doi:10.1063/1.3009677

20. Rybakov, K. I., V. E. Semenov, S. V. Egorov, A. G. Eremeev, I. V. Plotnikov, and Yu. V. Bykov, "Microwave heating of conductive powder materials," J. Appl. Phys., Vol. 99, 023506, 2006.
doi:10.1063/1.2159078

21. Weast, R. C., CRC Handbook of Chemistry and Physics, 1967.

22. Jaleel Akhtar, M., N. K. Tiwari, J. Devi, M. M. Mahmoud, M. Thumm, and G. Link, "Determination of effective constitutive properties of metal powders at 2.45 GHz for microwave processing applications," Frequenz, Vol. 68, 69-81, 2014.

23. Brandes, E. A., G. B. Brook, and B. Heinemannn, "Smithells Metals Reference Book," Oxford, 2000.

24. Mishra, P., G. Sethi, and A. Upadhyaya, "Modeling of microwave heating of particulate metal," Mettalurgical and Materials Transactions B, Vol. 37B, 839-845, 2006.
doi:10.1007/s11663-006-0066-z

25. Wu, J.-Y. and R. Lee, "Advantages of triangular and tetrahedral edge elements for electromagnetic modeling with the finite-element method," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 9, 1997.

26. Devi, J., R. Saikia, and P. Datta, "Modeling of absorption and scattering properties of core-shell nanoparticles for application as nanoantenna in optical domain," Journal of Physics: Conference Series, Vol. 759, 012039, 2016.
doi:10.1088/1742-6596/759/1/012039