Vol. 67
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-03-24
A Compact Quarter-Mode SIW Bandpass Filter with an Extremely Wide Stopband
By
Progress In Electromagnetics Research Letters, Vol. 67, 13-18, 2017
Abstract
This paper presents a C-band wide stopband bandpass filter (BPF) using quarter mode substrate integrated waveguide (QMSIW) cavities. The BPF is simply constructed by combining S-shaped slot and L-shaped slot loaded quarter-mode substrate integrated waveguide. A special negative coupling scheme with symmetrical S-shaped slots on the top and bottom metal planes connected by metallic vias is developed. The proposed structure provides more design flexibility in arranging the pitch of vias owing to the extended slot length. The filter has fractional bandwidth of 25% at center frequency of 5.5 GHz with return loss better than 24 dB and insertion loss less than 1.1 dB. Moreover, its first spurious response occurs at 22.5 GHz (about four times the central frequency), exhibiting an extremely wide stopband performance. An experimental SIW filter was fabricated, and good agreement was achieved between the simulated and measured results.
Citation
Wei Yang, Guo Hui Li, Yudan Wu, Ya-Na Yang, Li Sun, and Xuexia Yang, "A Compact Quarter-Mode SIW Bandpass Filter with an Extremely Wide Stopband," Progress In Electromagnetics Research Letters, Vol. 67, 13-18, 2017.
doi:10.2528/PIERL17020706
References

1. Kim, C. H. and K. Chang, "Wide-stopband passband filter using asymmetric stepped-impedance resonators," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 2, 69-71, Feb. 2013.
doi:10.1109/LMWC.2012.2236885

2. Uchimura, H., T. Takenoshita, and M. Fujii, "Development of a laminated waveguide," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 12, 2438-2443, Dec. 1998.
doi:10.1109/22.739232

3. Deslandes, D. and K. Wu, "Integration microstrip and rectangular wave-guide in planar form," IEEE Microw. Wireless Compon. Lett., Vol. 11, No. 2, 68-70, Feb. 2001.
doi:10.1109/7260.914305

4. Che, W., L. Geng, K. Deng, and Y. L. Chow, "Analysis and experiment of compact folded substrateintegrate waveguide," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 1, 88-93, Jan. 2008.
doi:10.1109/TMTT.2007.911955

5. Zhang, Q.-L., B.-Z. Wang, D.-S. Zhao, and K. Wu, "A compact half-mode substrate integrated waveguide bandpass filter with wide out-of-band rejection," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 7, 501-503, Jul. 2016.
doi:10.1109/LMWC.2016.2574997

6. Yang, T., P. Chi, R. Xu, and W. Lin, "Folded substrate integrated waveguide based composite right/left handed transmission line and its application to partial H-plane filters," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 2, 789-799, Feb. 2013.
doi:10.1109/TMTT.2012.2231431

7. Guo, Z., K.-S. Chin, W. Che, and C.-C. Chang, "Cross-coupled bandpass filters using QMSIW cavities and S-shaped slot coupling structures," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 2, 160-167, Jan. 2013.
doi:10.1080/09205071.2013.741514

8. Zhu, F., W. Hong, J. Chen, and K. Wu, "Wide stopband substrate integrated waveguide filter using corner cavities," Electron. Lett., Vol. 49, No. 1, 50-52, Jan. 2013.
doi:10.1049/el.2012.3891

9. Lan, S.-W., M.-H. Weng, C.-Y. Huang, and S.-J. Chang, "Design of a compact ultra-wideband bandpass filter with an extremely broad stopband region," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 6, 392-394, Jun. 2016.
doi:10.1109/LMWC.2016.2558039

10. Zhang, X. Y., X. Dai, H.-L. Kao, B.-H. Wei, Z. Y. Cai, and Q. Xue, "Compact LTCC bandpass filter with wide stopband using discriminating coupling," IEEE Trans. Compon., Packag. Manuf. Technol., Vol. 4, No. 4, 656-663, Apr. 2014.
doi:10.1109/TCPMT.2013.2297522