1. Beguhn, S., X. Yang, and N. X. Sun, "Wideband ferrite substrate integrated waveguide isolator using shape anisotropy," J. Appl. Phys., Vol. 115, No. 17, 17E503, 2014.
doi:10.1063/1.4854895
2. Yang, S., D. Vincent, J. R. Bray, and L. Roy, "Study of a ferrite LTCC multifunctional circulator with integrated winding," IEEE Trans. Comp., Packaging and Manufacturing Tech., Vol. 5, No. 7, 879-876, 2015.
doi:10.1109/TCPMT.2015.2440660
3. Dionne, G. F. and D. E. Oates, "Tuning limitations of the voltage-controlled planar microwave ferrite resonator," J. Appl. Phys., Vol. 111, No. 7, 07E506, 2012.
doi:10.1063/1.3672397
4. Nafe, A. and A. Shamim, "An integrable SIW phase shifter in a partially magnetized ferrite LTCC package," IEEE Trans. Microwave Theory and Tech., Vol. 63, No. 7, 2264-2274, 2015.
doi:10.1109/TMTT.2015.2436921
5. Wu, J., S. Beguhn, Z. Y. Zhou, J. Lou, and N. X. Sun, "Novel C-band tunable bandpass filter with low bias magnetic fields using partially magnetized ferrites," Proc. International IEEE MTT-S Microwave Symposium Digest (MTT), 1-3, Montreal, Quebec, Canada, 17-22 June 2012.
6. Arabi, E., A. Syed, and A. Shamim, "A planar and tunable bandpass filter on a ferrite substrate with integrated windings," Proc. 2015 IEEE MTT-S Int. Microwave Symposium, 1-3, Phoenix, USA, 17–22 May 2015.
7. Hou, Q., Y. Y. Su, and X. P. Zhao, "A high gain patch antenna Based on PN zero permeability metamaterial," Microw. Opt. Technol. Lett., Vol. 56, No. 5, 1065-1069, 2014.
doi:10.1002/mop.28261
8. Fan, Y., L. Li, S. Yu, C. Zhu, and C. Liang, "Experimental study of efficient wireless power transfer system integrating with highly sub-wavelength metamaterials," Progress In Electromagnetics Research, Vol. 141, 769-784, 2013.
doi:10.2528/PIER13061711
9. Garcia, N. and E. V. Ponizovskaia, "Low-loss left-handed materials using metallic magnetic cylinders," Phys. Rev. E, Vol. 71, 046611, 2005.
doi:10.1103/PhysRevE.71.046611
10. Bezougly, A. V. and V. V. Khoroshun, "Electromagnetic wave diffraction by a grating of gyrotropic circular cylinders," Telecommunications and Radio Engineering, Vol. 57, No. 5, 1-6, 2002.
11. Rybin, O., "Unusual microwave effective properties of two-component metaferrites," Int. J. Appl. Electromagnetics and Mech., Vol. 46, No. 3, 519-526, 2014.
12. Rybin, O., "Effective permeability tensor of partially magnetized two-component metaferrites," Mod. Phys. Lett. B, Vol. 28, No. 25, 1450199, 2014.
doi:10.1142/S0217984914501991
13. Simovski, C. R., P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, "Wire metamaterials: Physics and applications," Adv. Mat., Vol. 24, 4229-4228, 2012.
doi:10.1002/adma.201200931
14. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Trans. Instrumentation and Meas., Vol. 39, No. 2, 387-394, 1990.
doi:10.1109/19.52520
15. Kim, H., "Highly efficient wireless power transfer using metamaterial slab with zero refractive property," Elec. Letts., Vol. 50, No. 16, 1158-1160, 2014.
doi:10.1049/el.2014.1596
16. Rybin, O. and S. Shulga, "Profile miniaturization and performance improvement of a rectangular patch antenna using magnetic metamaterial substrates," Int. J. RF and Microwave Computer-Aided Engineering, Vol. 26, No. 3, 254-261, 2016.
doi:10.1002/mmce.20961
17. Mavridis, A. A. and G. A. Kyriacou, "On the design of patch antennas tuned by transversely magnetized lossy ferrites including a novel resonating mode," Progress In Electromagnetics Research, Vol. 62, 165-192, 2006.
doi:10.2528/PIER06041301