Vol. 67
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-04-18
A Compact Perpendicular Microscopy and Imaging System for the Detection of Fluorescent Solution Flow
By
Progress In Electromagnetics Research Letters, Vol. 67, 75-79, 2017
Abstract
Light sheet microscope is a versatile imaging tool for high imaging speed and signal to noise ratio (SNR). In this type of system, the illumination is perpendicular to the direction of detection. Due to its structural feature of perpendicular detection, the SNR is comparable to total internal reflection fluorescence (TIRF) microscopy. Therefore, the perpendicular detection system is of great application prospect. In this paper, we develope a compact optical perpendicular detection system, which can not only be utilized to measure fluorescence with high SNR, but also capture a fluorescent image of flow fluorophore.
Citation
Fuhong Cai, Meng Zhao, and Dan Wang, "A Compact Perpendicular Microscopy and Imaging System for the Detection of Fluorescent Solution Flow," Progress In Electromagnetics Research Letters, Vol. 67, 75-79, 2017.
doi:10.2528/PIERL17020205
References

1. Keller, P. J., A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, "Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy," Science, Vol. 322, No. 5904, 1065-1069, 2008.
doi:10.1126/science.1162493

2. Truong, T. V., W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, "Deep and fast live imaging with two-photon scanned light-sheet microscopy," Nature Methods, Vol. 8, No. 9, 757-760, 2011.
doi:10.1038/nmeth.1652

3. Planchon, T. A., L. Gao, D. E. Milkie, M. W. Davidson, J. A., Galbraith, C. G. Galbraith, and E. Betzig, "Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination," Nature Methods, Vol. 8, No. 5, 417-423, 2011.
doi:10.1038/nmeth.1586

4. Susaki, E. A., K. Tainaka, D. Perrin, et al. "Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis," Cell, Vol. 157, No. 3, 726-739, 2014.
doi:10.1016/j.cell.2014.03.042

5. Chen, B. C., W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A. C. Reymann, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, "Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution," Science, Vol. 346, No. 6208, 1257998, 2014.
doi:10.1126/science.1257998

6. Betzig, E., G. H. Patterson, R. Sougrat, et al. "Imaging intracellular fluorescent proteins at nanometer resolution," Science, Vol. 313, No. 5793, 1642-1645, 2006.
doi:10.1126/science.1127344

7. Cai, F., J. Qian, L. Jiang, and S. He, "Multifunctional optical imaging using dye-coated gold nanorods in a turbid medium," Journal of Biomedical Optics, Vol. 16, No. 1, 016002-016002-8, 2011.
doi:10.1117/1.3526700

8. Hoge, F. E. and R. N. Swift, "Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments," Applied Optics, Vol. 20, No. 18, 3197-3205, 1981.
doi:10.1364/AO.20.003197

9. Weston, S. A. and C. R. Parish, "New fluorescent dyes for lymphocyte migration studies: Analysis by flow cytometry and fluorescence microscopy," Journal of Immunological Methods, Vol. 133, No. 1, 87-97, 1990.
doi:10.1016/0022-1759(90)90322-M

10. Dunn, P. A. and H. W. Tyrer, "Quantitation of neutrophil phagocytosis, using fluorescent latex beads. Correlation of microscopy and flow cytometry," The Journal of Laboratory and Clinical Medicine, Vol. 98, No. 3, 374-381, 1981.