Vol. 67
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-05-08
A Stopband Control Technique for Conversion of CPW-Fed Wideband Antennas to UWB
By
Progress In Electromagnetics Research Letters, Vol. 67, 131-137, 2017
Abstract
A technique for converting a wide-band coplanar waveguide fed antenna to UWB by positioning slots in the modified ground plane (MGP) adjacent to the feed is proposed in this paper. The slots can be symmetrically or asymmetrically positioned for optimum performance. One slot pair is initially positioned through parametric analysis in the modified ground plane at an equal distance from the feed end for the maximum achievable impedance bandwidth. The second slot pair is similarly positioned, optimising the antenna for ultra wideband operation. Two CPW fed antenna geometries are experimented using the technique, one unique and the other, a generic circular monopole. Both antennas have MGP and are fabricated on an FR4 substrate. The analysis and simulation have been done in FEM based High Frequency Structure Simulator (HFSS). The performance of the two antennas is measured with a Vector Network Analyzer ‘Agilent PNAE8362B'. The impedance bandwidth and radiation pattern validate the performance of the antennas for ultra wideband applications. The experimentally obtained bandwidth precisely covers UWB, and principal patterns are uniform throughout the band.
Citation
Philip Cherian, and Palayyan Mythili, "A Stopband Control Technique for Conversion of CPW-Fed Wideband Antennas to UWB," Progress In Electromagnetics Research Letters, Vol. 67, 131-137, 2017.
doi:10.2528/PIERL17020201
References

1. Federal Communications Commission "FCC report and order on ultra wideband technology,", Washington DC, 2002.
doi:10.1002/0470869194

2. Oppermann, M. H. and J. Iinatti, UWB Theory and Applications, John Wiley & Sons, Ltd., 2004.
doi:10.1109/TIE.2016.2608769

3. Huang, G.-L., S.-G. Zhou, and T. H. Chio, "Highly-efficient self-compact monopulse antenna system with integrated comparator network for RF industrial applications," IEEE Trans. Ind. Electron., Vol. 64, No. 1, 674-681, Jan. 2017, doi: 10.1109/TIE.2016.2608769.
doi:10.1109/LGRS.2016.2576474

. Huang, G. L., S. G. Zhou, T. H. Chio, C. Y. D. Sim, and T. S. Yeo, "Wideband dual-polarized and dual-monopulse compact array for SAR system integration applications," IEEE Geoscience and Remote Sensing Letters, Vol. 13, No. 8, 1203-1207, Aug. 2016.
doi:10.1002/mop.1273

5. Ammann, M. J., "Control of impedance bandwidth of wideband Planar monopole antennas using a bevelling technique," Microwave Opt. Technol. Lett., Vol. 30, 229-232, 2001.

6. Zhang, C. and A. E. Fathy, "Development of an ultra-wideband elliptical disc planar monopole antenna with improved omni-directional performance using a modi ed ground," IEEE Int. Antennas Propag. Symp. Dig., 1689-1692, Albuqueque, NM, 2006.
doi:10.1002/mop.11313

7. Ammann, M. J. and Z. N. Chen, "An asymmetrical feed arrangement for improved impedance bandwidth of planar monopole antennas," Microwave Opt. Technol. Lett., Vol. 40, 156-158, 2004.
doi:10.1002/mop.24645

8. Habib, M. A., M. Nedil, A. Djaiz, and T. A. Denidni, "UWB binomial curved monopole with binomial curved ground plane," Microwave Opt. Technol. Lett., Vol. 51, No. 10, 2308-2313, Oct. 2009.

9. Cherian, P. and P. Mythili, "A coplanar UWB patch antenna with asymmetrically slotted ground plane," Antennas and Propagation Symposium APSYM 2012, Proceedings, 85-89, 2012.

10. Cherian, P. and P. Mythili, "Bandwidth optimization of a coplanar UWB patch antenna," Antennas and Propagation Society International Symposium (APSURSI), 404-405, IEEE, INSPEC Accession Number: 14057884, 2013, doi: 10.1109/APS.2013.6710863.
doi:10.1109/MAP.2010.5586574

11. Tanyer-Tigrek, F. M., A. Hizal, I. E. Lager, and L. P. Ligthart, "On the operating principles of UWB, CPW-fed printed antennas," IEEE Antennas and Propagation Magazine, Vol. 52, No. 3, Jun. 2010.