Vol. 74
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-04-13
Image Formation Using Fast Factorized Backprojection Based on Sub-Aperture and Sub-Image for General Bistatic Forward-Looking SAR with Arbitrary Motion
By
Progress In Electromagnetics Research B, Vol. 74, 141-153, 2017
Abstract
In this paper, a fast time domain imaging algorithm called bistatic forward-looking fast factorized backprojection algorithm (BF-FFBPA) based on sub-aperture and sub-image is proposed for general bistatic forward-looking synthetic aperture radar (BFSAR) with arbitrary motion. It can not only accurately dispose the large spatial variant range cell migrations and complicated motion errors, but also achieve high imaging efficiency. First, the imaging geometry and signal model are established, and the implementation of backprojection algorithm (BPA) in the BFSAR imaging is given to provide a basis for the proposed BF-FFBPA. Then, considering motion errors, the more accurate requirements of splitting sub-aperture and sub-image in the BF-FFBPA is introduced based on the range error analysis to offer the tradeoff between the imaging quality and efficiency. Finally, the implementation and computational burden of the BF-FFBPA is provided and analyzed. Simulated results and evaluations are given to prove the correctness of the theory analysis and the validity of the proposed approach.
Citation
Dong Feng, Dao Xiang An, and Xiao-Tao Huang, "Image Formation Using Fast Factorized Backprojection Based on Sub-Aperture and Sub-Image for General Bistatic Forward-Looking SAR with Arbitrary Motion," Progress In Electromagnetics Research B, Vol. 74, 141-153, 2017.
doi:10.2528/PIERB17011702
References

1. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, 2005.

2. An, D. X., Y. H. Li, X. T. Huang, X. Y. Li, and Z. M. Zhou, "Performance evaluation of frequencydomain algorithms for chirped low frequency UWB SAR data processing," IEEE J. Sel. Topics Appl. Earth Observ., Vol. 7, No. 2, 678-690, 2014.
doi:10.1109/JSTARS.2013.2265272

3. Xie, X. T., D. X. An, X. T. Huang, and Z. M. Zhou, "Fast time-domain imaging in elliptical polar coordinate for general bistatic VHF/UHF ultra-wideband SAR with arbitrary motion," IEEE J. Sel. Topics Appl. Earth Observ., Vol. 8, No. 2, 879-895, 2014.
doi:10.1109/JSTARS.2014.2347413

4. Chen, S., Y. Yuan, S. N. Zhang, H. C. Zhao, and Y. Chen, "A new imaging algorithm for forwardlooking missile-borne bistatic SAR," IEEE J. Sel. Topics Appl. Earth Observ., Vol. 9, No. 4, 1543-1552, 2016.
doi:10.1109/JSTARS.2015.2507260

5. Yang, J. Y., Y. L. Huang, H. G. Yang, J. J. Wu, W. C. Li, Z. Y. Li, and X. B. Yang, "A first experiment of airborne bistatic forward-looking SAR preliminary results," Proc IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), 4202-4204, Melbourne, VIC, Australia, 2013.

6. Espeter, T., I. Walterscheid, J. Klare, A. R. Brenner, and J. H. G. Ender, "Bistatic forwardlooking SAR: Results of a spaceborne-airborne experiment," IEEE Geosci. Remote Sens. Lett., Vol. 8, No. 4, 765-768, 2011.
doi:10.1109/LGRS.2011.2108635

7. Wu, J. J., Y. L. Huang, J. Y. Yang, W. C. Li, and H. G. Yang, "First results of bistatic forwardlooking SAR with stationary transmitter," Proc IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), 1223-1226, Vancouver, BC, Canada, 2011.

8. Walterscheid, I., A. R. Brenner, and J. Klare, "Radar imaging with very low grazing angles in a bistatic forward-looking configuration," Proc IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), 327-330, Munich, Germany, 2012.

9. Zhang, H. R., Y. Wang, and J. W. Li, "New applications of parameter-adjusting polar format algorithm in spotlight forward-looking bistatic SAR processing," Proc. Asian Pacific Synth. Aperture Radar (APSAR), 384-387, Tsukuba, Japan, 2013.

10. Sun, J. P., Y. Lv, W. Hong, and S. Y. Mao, "The polar format imaging algorithm for forwardlooking bistatic SAR," Proc. Eur. Conf. Synth. Aperture Radar (EUSAR), 1-4, Friedrichshafen, Germany, 2008.

11. Shin, H. S. and J. T. Lim, "Omega-k algorithm for airborne forward-looking bistatic spotlight SAR imaging," IEEE Geosci. Remote Sens. Lett., Vol. 6, No. 2, 312-316, 2009.
doi:10.1109/LGRS.2008.2011924

12. Wu, J. J., J. Y. Yang, Y. L. Huang, and H. G. Yang, "Focusing bistatic forward-looking SAR using chirp scaling algorithm," Proc. IEEE Radar Conf. (RADAR), 1036-1039, Kansas, MO, USA, 2011.

13. Rodriguez-Cassola, M., P. Prats, G. Krieger, and A. Moreira, "Efficient time-domain image formation with precise topography accommodation for general bistatic SAR configurations," IEEE Trans. Aerosp. Electron. Syst., Vol. 47, No. 4, 2949-2966, 2011.
doi:10.1109/TAES.2011.6034676

14. Vu, V. T. and M. I. Pettersson, "Fast backprojection algorithms based on subapertures and local polar coordinates for general bistatic airborne SAR systems," IEEE Trans. Geosci. Remote Sens., Vol. 54, No. 5, 2706-2712, 2016.
doi:10.1109/TGRS.2015.2504787

15. Vu, V. T., T. K. Sjogren, and M. I. Pettersson, "SAR imaging in ground plane using fast backprojection for mono- and bistatic cases," Proc. IEEE Radar Conf. (RADAR), 0184-0189, Atlanta, GA, USA, 2012.

16. Shao, Y. F., R. Wang, Y. K. Deng, Y. Liu, R. P. Chen, G. Liu, and O. Loffeld, "Fast backprojection algorithm for bistatic SAR imaging," IEEE Geosci. Remote Sens. Lett., Vol. 10, No. 5, 1080-1084, 2013.
doi:10.1109/LGRS.2012.2230243

17. Vu, V. T., T. K. Sjogren, and M. I. Pettersson, "Fast time-domain algorithms for UWB bistatic SAR processing," IEEE Trans. Aerosp. Electron. Syst., Vol. 3, No. 49, 1982-1994, 2013.
doi:10.1109/TAES.2013.6558032