1. Yang, H., F. Weng, L. Lv, N. Lu, G. Liu, M. Bai, Q. Qian, J. He, and H. Xu, "The FengYun-3 microwave radiation imager on-orbit verification," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 11, 4452-4560, 2011.
doi:10.1109/TGRS.2011.2148200
2. Wang, Z.-Z., J. Li, S. Zhang, and Y. Li, "Prelaunch calibration of microwave humidity sounder on China’s FY-3A," IEEE Geosci. Remote Sens. Lett., Vol. 8, No. 1, 29-33, 2011.
doi:10.1109/LGRS.2010.2050676
3. Nian, F., Y.-J. Yang, Y.-M. Chen, D.-Z. Xu, and W. Wang, "Recent progress on space-borne microwave sounder pre-launch calibration technologies in China," Journal System Engineering Electronics, Vol. 19, No. 4, 643-650, 2008.
doi:10.1016/S1004-4132(08)60133-4
4. Randa, J., A. Cox, and D. K. Walker, "Proposed development of a national standard of microwave brightness temperature," IEEE Proc. IGARSS, 3979-3982, Jul. 31–Aug. 4, 2006.
5. Nian, F., Y.-J. Yang, and W. Wang, "Research of optimizing the microwave wide band blackbody calibration target," Journal of Systems Engineering and Electronics, Vol. 20, No. 1, 6-12, 2009.
6. Wang, J.-H., J.-G. Miao, Y.-J. Yang, and Y.-M. Chen, "Scattering property and emissivity of a periodic pyramid array covered with absorbing material," IEEE Trans. Antennas Propagat., Vol. 56, No. 8, 2656-2663, 2008.
doi:10.1109/TAP.2008.927570
7. Sandeep, S. and A. J. Gasiewski, "Electromagnetic analysis of radiometer calibration targets using dispersive 3D FDTD," 2012 IEEE Trans. Antennas Propagat., Vol. 60, No. 6, 2821-2828, 2012.
doi:10.1109/TAP.2012.2194679
8. Jin, M., M. Bai, and J.-G. Miao, "Emissivity study of the array shaped blackbody in the microwave band," Acta Phys. Sin., Vol. 61, No. 16, 164211, 2012 (in Chinese).
9. Wang, J.-H., Y.-J. Yang, J.-G. Miao, and Y.-M. Chen, "Emissivity calculation for a finite circular array of pyramidal absorbers based on Kirchhoff’s law of thermal radiation," 2010 IEEE Trans. Antennas Propagat., Vol. 58, No. 4, 1173-1180, 2010.
doi:10.1109/TAP.2010.2041148
10. Bai, M., M. Jin, N.-M. Ou, and J.-G. Miao, "On scattering from an array of absorptive material coated cones by the PWS approach," 2013 IEEE Trans. Antennas Propagat., Vol. 61, No. 6, 3216-3224, 2013.
doi:10.1109/TAP.2013.2247733
11. Pan, G., M. Jin, L.-S. Zhang, M. Bai, and J.-G. Miao, "An efficient scattering algorithm for smooth and sharp surfaces: Coiflet-based scalar MFIE," IEEE Trans. Antennas Propagat., Vol. 62, No. 8, 4241-4250, 2014.
doi:10.1109/TAP.2014.2322886
12. Jin, M., M. Bai, L.-S. Zhang, G. Pan, and J.-G. Miao, "On the coiflet-TDS solution for scattering by sharp coated cones and its application to emissivity determination," IEEE Trans. Geosci. Remote Sensing, Vol. 54, No. 3, 1399-1409, 2016.
doi:10.1109/TGRS.2015.2480403
13. Sandeep, S. and A. J. Gasiewski, "Effect of geometry on the reflectivity spectrum of radiometer calibration targets," IEEE Geosci. Remote. Sensing. Lett., Vol. 11, No. 1, 84-88, 2014.
doi:10.1109/LGRS.2013.2246914
14. Chen, C.-Y., F. Li, Y.-J. Yang, and Y.-M. Chen, "Emissivity measurement study on wide aperture microwave radiator," IEEE Proc. ICMMT, 914-917, Apr. 21–24, 2008.
15. Gu, D.-Z., D. Houtz, J. Randa, and D. K. Walker, "Reflectivity study of microwave blackbody target," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 9, 3443-3451, 2011.
doi:10.1109/TGRS.2011.2125975
16. Houtz, D., D. K. Walker, and D.-Z. Gu, "Progress towards a NIST microwave brightness temperature standard for remote sensing," IEEE Proc. IGARSS, 3485-3488, Jul. 26–31, 2015.
17. Gu, D.-Z., J. Randa, and D. K. Walker, "A geometric error model for misaligned calibration target in passive microwave remote-sensing systems," IEEE Geosci. Remote. Sensing. Lett., Vol. 10, No. 6, 1597-1601, 2013.
doi:10.1109/LGRS.2013.2262471
18. Gu, D.-Z. and D. K. Walker, "Application of coherence theory to modeling of blackbody radiation at close range," IEEE Trans. Microwave Theory Tech., Vol. 63, No. 5, 1475-1488, 2015.
doi:10.1109/TMTT.2015.2418193
19. http://www.eccosorb.com/products-eccosorb-cr.htm; www.eccosorb.com/products-eccosorbmf.htm, , .