Vol. 55
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-04-02
Contribution to the Analytical Evaluation of the Efficiency and the Optimal Control of Conductive Fluids by Electromagnetic Forces
By
Progress In Electromagnetics Research M, Vol. 55, 153-159, 2017
Abstract
This work deals with the evaluation of the efficiency and optimal control of conductive fluids by using electromagnetic forces. An electromagnetic actuator based on a succession of electrodes and magnets annuli is implemented on the surface of the rotating cylinder of a Taylor-Couette device. Considering a laminar flow, the magnetohydrodynamic (MHD) problem is formulated and solved analytically. The different MHD powers, control efficiency and optimal values of the control parameters are evaluated.
Citation
Hocine Menana, and Celine Gabillet, "Contribution to the Analytical Evaluation of the Efficiency and the Optimal Control of Conductive Fluids by Electromagnetic Forces," Progress In Electromagnetics Research M, Vol. 55, 153-159, 2017.
doi:10.2528/PIERM17011006
References

1. Oualli, H., M. Mekadem, M. Lebbi, and A. Bouabdallah, "Taylor-Couette flow control by amplitude variation of the inner cylinder cross-section oscillation," Eur. Phys. J. Appl. Phys., Vol. 71, 11102, 2015.
doi:10.1051/epjap/2015140232

2. Albrecht, T., J. Stiller, H. Metzkes, T. Weier, and G. Gerbeth, "Electromagnetic flow control in poor conductors," Eur. Phys. J. Special Topics, 220-275, 2013.

3. Berger, T. W., J. Kim, C. Lee, and J. Lim, "Turbulent boundary layer control utilizing the Lorentz force," Physics of Fluids, Vol. 12, No. 3, 631-649, March 2000.
doi:10.1063/1.870270

4. Weier, T., U. Fey, G. Gerbeth, G. Mutschke, O. Lielausis, and E. Platacis, "Boundary layer control by means of wall parallel Lorentz forces," Magnetohydrodynamics, Vol. 37, No. 1-2, 177-186, 2001.

5. Hinze, M., "Control of weakly conductive fluids by near wall Lorentz forces," GAMM-Mitt, Vol. 30, No. 1, 149-158, 2007.
doi:10.1002/gamm.200790004

6. Thibault, J.-P. and L. Rossi, "Electromagnetic flow control: Characteristic numbers and flow regimes of a wall-normal actuator," J. Phys. D: Appl. Phys., Vol. 36, No. 1, 2003.

7. Taylor, G. I., "Stability of viscous liquid contained between two rotating cylinders," Phil. Trans. R. Soc. Lond. A, Vol. 223, 289-343, 1923.
doi:10.1098/rsta.1923.0008

8. Menana, H., J. F. Charpentier, and C. Gabillet, "Contribution to the MHD modeling in low speed radial flux AC machines with air-gaps filled with conductive fluids," IEEE Trans. Mag., Vol. 50, No. 1, 1-4, Vol. 8100104, January 2014.
doi:10.1109/TMAG.2013.2281421

9. White, M. F., Fluid Mechanics, 4th Ed., McGraw-Hill, Inc., 1995.

10. Dou, H.-S., B. C. Khoo, and K. S. Yeo, "Energy loss distribution in the plane couette flow and the Taylor-Couette flow between concentric rotating cylinders," Inter. J. of Therm. Sci., Vol. 46, 262-275, 2007.
doi:10.1016/j.ijthermalsci.2006.05.003