1. Mankins, Y. C., "A technical overview of the “sun tower” solar power satellite concept," Acta Astronavtica, Vol. 50, 369-377, 2002.
doi:10.1016/S0094-5765(01)00167-9
2. Masumoto, H., "Research on solar power satellites and microwave power transmission in Japan," IEEE Microwave Magazine, Vol. 3, 36-45, 2002.
doi:10.1109/MMW.2002.1145674
3. Hashimoto, K. and N. Shinohara, "Solar power satellite and its EMC issues," EMC’09, 29-32, Kyoto, 2009.
4. Shinohara, N., "Beam control technologies with a high efficiency phased array for microwave power transmission in Japan," Proceedings of the IEEE, Vol. 101, 1448-1463, 2013.
doi:10.1109/JPROC.2013.2253062
5. Celeste, A., P. Jeanty, and G. Pignolet, "Case study in Reunion Island," Acta Astronautica, Vol. 54, 253-258, 2004.
doi:10.1016/S0094-5765(02)00302-8
6. Gomozov, A. V., D. V. Gretskih, V. M. Shokalo, and Sh. F. A. Al-Sammarraie, "Principles of construction and application of the microwave systems for wireless energy transmission of ground and space basing," IEEE Computational Problems of Electrical Engineering, Vol. 2, 15-23, 2012.
7. Dickinson, R. M., "Power in the sky: Requirements for microwave wireless power beamers for powering high-altitude platforms," IEEE Microwave Magazine, Vol. 14, 36-47, 2013.
doi:10.1109/MMM.2012.2234632
8. Wu, Y., J. Linnartz, et al. "Modeling of RF energy scavenging for batteryless wireless sensors with low input power personal indoor and mobile radio communications," PIMRC, IEEE 24th International Symposium, 527-531, 2013.
9. Lu, X., P. Wang, D. Niyato, et al. "Wireless networks with RF energy harvesting: A contemporary survey," IEEE Communications Surveys and Tutorials, Vol. 17, 757-789, 2015.
doi:10.1109/COMST.2014.2368999
10. Kotter, D. K., S. D. Novack, W. D. Slafer, and P. J. Pinhero, "Theory and manufacturing processes of solar nanoantenna electromagnetic collectors," Journal of Solar Energy Engineering-transactions of the Asme, Vol. 132, 2010, http://www.academia.edu/8220294.
doi:10.1115/1.4000577
11. Bankov, S. E., "Signal detection in a radiating nonlinear electromagnetic crystal," Journal of Radio Electronics, No. 1, 2012, http://jre.cplire.ru/jre/jan12/1/text.pdf (in Russian).
12. Semenikhina, D. V., A. I. Semenikhin, T. Y. Privalova, and V. V. Demshevsky, "Parametrical excitation microstrip lattice with nonlinear loads," International Conference on Electromagnetics in Advanced Applications (ICEAA), 245-248, 2014.
doi:10.1109/ICEAA.2014.6903855
13. Huang, W., B. Zhang, X. Chen, K. Huang, and C. Liu, "Study on an S-band rectenna array for wireless microwave power transmission," Progress In Electromagnetics Research, Vol. 135, 747-758, 2013.
doi:10.2528/PIER12120314
14. Matsunaga, T., E. Nishiyama, and I. Toyoda, "5.8-GHz stacked differential rectenna suitable for large-scale rectenna arrays with DC connection," IEEE Trans. Antennas and Propag., Vol. 63, 5944-5949, 2015.
doi:10.1109/TAP.2015.2491319
15. Shifrin, Ya. S. and A. I. Luchaninov, "Antennas with nonlinear elements," The Reference Manual on Antenna Equipment, Vol. 1, 207-235, Moscow, 1997 (in Russian).
16. Luchaninov, A. I. and Y. S. Shifrin, "Mathematical model of antenna with lumped nonlinear elements," Telecommunications and Radio Engineering, Vol. 66, No. 9, 763-803, 2007.
doi:10.1615/TelecomRadEng.v66.i9.10
17. Shifrin, Y. S., A. I. Luchaninov, and A. S. Posokhov, "Structural model of antennas with nonlinear elements," Telecommunications and Radio Engineering, Vol. 59, No. 1–2, 32-48, 2003.
doi:10.1615/TelecomRadEng.v59.i12.20
18. Amitay, N., V. Galindo, and C. P. Wu, Theory and Analysis of Phased Array Antennas, John Wiley & Sons Inc, 1972.
19. Sazonov, D. M., Multi-element Antenna Systems, Matrix Approach, Publishing House “Radiotekhnika”, 2015 (in Russian).
20. Shokalo, M. V., A. I. Luchaninov, A. M. Rybalro, and D. V. Gretskih, Large-aperture rectifying antennas for wireless energy transfer by a microwave beam, Kollegium, Kharkov, 2006 (in Russian).
21. Nesterenko, M. V., V. A. Katrich, and V. M. Dakhov, "Formation of the radiation field with the set spatial-polarization characteristics by the crossed impedance vibrators system," Radiophysics and Quantum Electronics, Vol. 53, 371-378, 2010.
doi:10.1007/s11141-010-9236-6
22. Nesterenko, M. V., V. A. Katrich, Y. M. Penkin, V. M. Dakhov, and S. L. Berdnik, Thin Impedance Vibrators. Theory and Applications, Springer Science+Business Media, 2011.
doi:10.1007/978-1-4419-7850-9
23. Nesterenko, M. V., V. A. Katrich, V. M. Dakhov, and S. L. Berdnik, "Impedance vibrator with arbitrary point of excitation," Progress In Electromagnetics Research B, Vol. 5, 275-290, 2008.
doi:10.2528/PIERB08022805
24. Nesterenko, M. V., "Analytical methods in the theory of thin impedance vibrators," Progress In Electromagnetics Research B, Vol. 21, 299-328, 2010.
25. Nesterenko, M. V., V. A. Katrich, S. L. Berdnik, Y. M. Penkin, and V. M. Dakhov, "Application of the generalized method of induced EMF for investigation of characteristics of thin impedance vibrators," Progress In Electromagnetics Research B, Vol. 26, 149-178, 2010.
doi:10.2528/PIERB10052902
26. Penkin, Yu. M., V. A. Katrich, and M. V. Nesterenko, "Development of fundamental theory of thin impedance vibrators," Progress In Electromagnetics Research M, Vol. 45, 185-193, 2016.
doi:10.2528/PIERM15120105