Vol. 158
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2017-04-09
Millimeter Wave Cavity Backed Microstrip Antenna Array for 79 GHz Radar Applications
By
Progress In Electromagnetics Research, Vol. 158, 89-98, 2017
Abstract
In this paper, a 79 GHz microstrip antenna subarray, optimized for operation in a Phase Modulated Continuous Wave (PMCW) MIMO radar demonstrator is presented. The antenna combines all necessary features for this very specific type of applications. First of all, the spillover between transmit and receive channels in such a system is reduced by the combined effect of a microvia cage and the arraying of two elements. Second, it shows a wide band of 13.5%. Third, a wide beam in the E-plane (136 degrees), necessary for scanning, and a much smaller beamwidth in H-plane (36 degrees), advantageous to reduce mutual coupling, are realized. Finally, it has been fabricated with the advanced so-called ``Any-Layer'' technology. This technology is as accurate as other advanced technologies in the millimeter wave bands, but at a much lower cost, and thus very suited for mass production. The gain and radiation efficiency were simulated to be 7.27 dBi and 83%, respectively.
Citation
Mohammad Mosalanejad, Steven Brebels, Charlotte Soens, Ilja Ocket, and Guy Vandenbosch, "Millimeter Wave Cavity Backed Microstrip Antenna Array for 79 GHz Radar Applications," Progress In Electromagnetics Research, Vol. 158, 89-98, 2017.
doi:10.2528/PIER17010407
References

1. Cui, B., C. Wang, and X.-W. Sun, "Microstrip Array Double-Antenna (MADA) technology applied in millimeter wave compact radar front-end," Progress In Electromagnetics Research, Vol. 66, 125-136, 2006.
doi:10.2528/PIER06110902

2. Camblor-Diaz, R., S. Ver-Hoeye, C. Vazquez-Antuna, G. R. Hotopan, M. Fernandez-Garcia, and F. Las Heras Andres, "Sub-millimeter wave frequency scanning 8 × 1 antenna array," Progress In Electromagnetics Research, Vol. 132, 215-232, 2012.
doi:10.2528/PIER12072305

3. Hasch, J., E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, "Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band," EEE Trans. Microw. Theory Techn., Vol. 60, No. 3, Part 2, 845-860, 2012.

4. Guermandi, D., Q. Shi, A. Medra, T. Murata, W. Van Thillo, A. Bourdoux, P. Wambacq, and V. Giannini, "A 79 GHz binary phase-modulated continuous-wave radar transceiver with TX-to-RX spillover cancellation in 28 nm CMOS," 2015 IEEE International Solid-State Circuits Conference (ISSCC), 1-3, 2015.

5. Wong, K. W., L. Chiu, and Q. Xue, "A 2-D van atta array using star-shaped antenna elements," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1204-1206, 2007.
doi:10.1109/TAP.2007.893407

6. Yousefzadeh, N., C. Ghobadi, and M. Kamyab, "Consideration of mutual coupling in a microstrip patch array using fractal elements," Progress In Electromagnetics Research, Vol. 66, 41-49, 2006.
doi:10.2528/PIER06081401

7. Farahbakhsh, A., M. Mosalanejad, Gh. Moradi, and Sh. Mohanna, "Using polygonal defect in ground structure to reduce mutual coupling in microstrip array antenna," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 2, 194-201, 2014.
doi:10.1080/09205071.2013.861750

8. Ghosh, C. K., B. Mandal, and S. K. Parui, "Mutual coupling reduction of a dual frequency microstrip antenna array by using U-shaped DGS and inverted U-shaped microstrip resonator," Progress In Electromagnetics Research C, Vol. 48, 61-68, 2014.
doi:10.2528/PIERC14020603

9. Islam, M. T. and M. S. Alam, "Compact EBG structure for alleviating mutual coupling between patch antenna array elements," Progress In Electromagnetics Research, Vol. 137, 425-438, 2013.
doi:10.2528/PIER12121205

10. Yang, X. M., X. G. Liu, X. Y. Zhou, and T. J. Cui, "Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials," IEEE Antennas Wireless Propag. Lett., Vol. 11, 389-391, 2012.
doi:10.1109/LAWP.2012.2193111

11. Qamar, Z. and H. C. Park, "Compact waveguided metamaterials for suppression of mutual coupling in microstrip array," Progress In Electromagnetics Research, Vol. 149, 183-192, 2014.
doi:10.2528/PIER14063002

12. Li, Y. and K.-M. Luk, "60-GHz substrate integrated waveguide fed cavity-backed aperture-coupled microstrip patch antenna arrays," IEEE Trans. Antennas Propag., Vol. 63, No. 3, 1075-1085, 2015.
doi:10.1109/TAP.2015.2390228

13. Ou Yang, J., S. Bo, J. Zhang, and F. Yang, "A low-profile unidirectional cavity-backed log-periodic slot antenna," Progress In Electromagnetics Research, Vol. 119, 423-433, 2011.
doi:10.2528/PIER11070503

14. Kam, D., D. Liu, A. Natarajan, S. Reynolds, H. Chen, and B. A. Floyd, "LTCC packages with embedded phased-array antennas for 60 GHz communications," IEEE Antennas Wireless Propag. Lett., Vol. 21, No. 3, 142-144, 2011.

15. Pazin, L. and Y. Leviatan, "A compact 60-GHz tapered slot antenna printed on LCP substrate for WPAN applications," IEEE Antennas Wireless Propag. Lett., Vol. 9, 272-275, 2010.
doi:10.1109/LAWP.2010.2046612

16. Brebels, S., Ch. Soens, W. De Raedt, and G. A. E. Vandenbosch, "Compact LTCC antenna package for 60 GHz wireless transmission of uncompressed video," IEEE MTT-S International Microwave Symposium Digest, 1-4, 2011.

17. Liu, D., J. A. G. Akkermans, H. Chen, and B. Floyd, "Packages with integrated 60-GHz aperturecoupled patch antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 10, 3607-3616, 2011.
doi:10.1109/TAP.2011.2163760

18. Enayati, A., G. A. E. Vandenbosch, and W. De Raedt, "Millimeter-wave horn-type antenna-inpackage solution fabricated in a teflon-based multi-layer PCB technology," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1581-1590, 2013.
doi:10.1109/TAP.2013.2242827

19. Mosalanejad, M., S. Brebels, I. Ocket, V. Volski, C. Soens, and G. A. E. Vandenbosch, "A complete measurement system for integrated antennas at millimeter wavelengths," 9th European Conference on Antennas and Propagation (EuCAP), 1-5, 2015.

20. Haimovich, A., R. Blum, and L. Cimini, "MIMO radar with widely separated antennas," IEEE Signal Process. Mag., Vol. 25, No. 1, 116-129, 2008.
doi:10.1109/MSP.2008.4408448

21. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, No. 9, 705-707, 2003.
doi:10.1049/el:20030495

22. Mohammadpour-Aghdam, K., S. Brebels, A. Enayati, R. Faraji-Dana, G. Vandenbosch, and W. DeRaedt, "RF probe influence study in millimeterwave antenna pattern measurements," International Journal of RF and Microwave Computer-aided Engineering, Vol. 21, No. 4, 413-420, 2011.
doi:10.1002/mmce.20530

23. Aspocomp PCB technology, Keilaranta, Finland, Website: “https://www.aspocomp.com”.