Vol. 60
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-10-02
Half-Mode Slow-Wave Substrate Integrated Waveguide Analysis
By
Progress In Electromagnetics Research M, Vol. 60, 169-178, 2017
Abstract
Design of a compact Substrate Integrated Waveguide (SIW) transmission line is presented in this paper. The main parameters of SIW were parametrically studied, and nal designed component was fabricated and measured, which showed very good matching (near 90%) with simulations, demonstrating significant miniaturization factor. The miniaturization was done using Half-Mode (HM) and Slow-Wave (SW) principles together. It was found that the HM-SW method for SIW miniaturization reduced the SIW surface area with a remarkable factor value (70%) while maintaining acceptable characteristics compared to the original SIW. In fact, HM technique reduced 40% the lateral dimension of the SIW, and using the SW technique allowed 30% of size reduction added to the HM principle. Furthermore, a proper microstrip to HM-SW-SIW tapered transition was designed, which showed a return loss decrease between 3 dB and 7.5 dB, as well as facilitating measurement. On the other hand, the proposed transmission line could lead to a size reduction of 30% compared to the HM-SIW miniaturization technique. The HM-SW-SIW transmission line concept presented in this paper can be used to design other compact SIW components such as bandpass filters, couplers, and power divider.
Citation
Mohamad Khalil, Mohamad Khalil, Jalal Jomaah, and Hussam Ayad, "Half-Mode Slow-Wave Substrate Integrated Waveguide Analysis," Progress In Electromagnetics Research M, Vol. 60, 169-178, 2017.
doi:10.2528/PIERM17010401
References

1. Sahu, A., V. K. Devabhaktuni, R. K. Mishra, and P. H. Aaen, "Recent advances in theory and applications of substrate-integrated waveguides: A review," International Journal of RF and Microwave Computer-Aided Engineering, 2015.

2. Djerafi, T. and K. Wu, "Multilayered substrate integrated waveguide 4 × 4 Butler matrix," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 22, No. 3, 336-344, 2012.
doi:10.1002/mmce.20602

3. Cheng, Y. J., C. A. Zhang, and Y. Fan, "Miniaturized multilayer folded substrate integrated waveguide Butler matrix," Progress In Electromagnetics Research C, Vol. 21, 45-58, 2011.
doi:10.2528/PIERC11020502

4. Grigoropoulos, N. and P. R. Young, "Compact folded waveguides," 34th European Microwave Conference, Vol. 2, 973-976, IEEE, 2004.

5. Wang, R., L.-S. Wu, and X.-L. Zhou, "Compact folded substrate integrated waveguide cavities and bandpass filter," Progress In Electromagnetics Research, Vol. 84, 135-147, 2008.
doi:10.2528/PIER08071501

6. Grigoropoulos, N., B. Sanz-Izquierdo, and P. Young, "Substrate integrated folded waveguides (SIFW) and filters," IEEE Microwave and Wireless Components Letters, Vol. 15, 829-831, Dec. 2005.
doi:10.1109/LMWC.2005.860027

7. Bozzi, M., S. Winkler, and K. Wu, "Broadband and compact ridge substrate-integrated waveguides," IET Microwaves, Antennas & Propagation, Vol. 4, No. 8, 1965-1973, Nov. 2010.

8. Bozzi, M., M. Pasian, and L. Perregrini, "Advanced modeling and design of substrate integrated waveguide components," 2014 IEEE International Wireless Symposium (IWS), 1-4, IEEE, 2014.

9. Hong, W., B. Liu, Y. Wang, Q. Lai, H. Tang, X. X. Yin, Y. D. Dong, Y. Zhang, and K. Wu, "Half mode substrate integrated waveguide: A new guided wave structure for microwave and millimeter wave application," Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, 2006, 219, IEEE, 2006.

10. Zhai, G. H., W. Hong, K. Wu, J. X. Chen, P. Chen, J. Wei, and H. J. Tang, "Folded half mode substrate integrated waveguide 3 dB coupler," IEEE Microwave and Wireless Components Letters, Vol. 18, 512-514, Aug. 2008.
doi:10.1109/LMWC.2008.2001006

11. Niembro-Martin, A., V. Nasserddine, E. Pistono, H. Issa, A.-L. Franc, T.-P. Vuong, and P. Ferrari, "Slow-wave substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, 2014.
doi:10.1109/TMTT.2014.2328974

12. Khalil, M., M. Kamarei, J. Jomaah, and H. Ayad, "Compact SIW leaky wave antenna," 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), 124-129, Apr. 2015.
doi:10.1109/TAEECE.2015.7113612

13. Khalil, M., M. Kamarei, J. Jomaah, and H. Ayad, "Substrate integrated waveguide miniaturization using slow wave and half mode techniques," IEEE International Microwave and RF Conference (IMaRC), 2015.

14. Rayas-Sanchez, J., "An improved EM-based design procedure for single-layer substrate integrated waveguide interconnects with microstrip transitions," IEEE MTT-S International Microwave Workshop Series on Signal Integrity and High-Speed Interconnects, 2009, IMWS 2009, 27-30, Feb. 2009.
doi:10.1109/IMWS.2009.4814902

15. Lai, Q., C. Fumeaux, W. Hong, and R. Vahldieck, "Characterization of the propagation properties of the half-mode substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 8, 1996-2004, 2009.
doi:10.1109/TMTT.2009.2025429

16. http://www.ansys.com/products/electronics/ansys-hfss.

17. Collin, R. E., Foundations for Microwave Engineering, John Wiley & Sons, 2007.

18. Machac, J., "Microstrip line on an artificial dielectric substrate," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 7, 416-418, 2006.
doi:10.1109/LMWC.2006.877120

19. Deslandes, D., "Design equations for tapered microstrip-to-substrate integrated waveguide transitions," IEEE Microwave Symposium Digest (MTT), 704-707, 2010.