Vol. 69
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-08-11
A Compact Quadruple-Mode Ultra-Wideband Bandpass Filter with a Broad Upper Stopband Based on Transversal-Signal Interaction Concepts
By
Progress In Electromagnetics Research Letters, Vol. 69, 119-125, 2017
Abstract
In this article, a compact ultra-wideband (UWB) band-pass filter (BPF) with wide upper stopband is presented. The filter is designed with a UWB response from 3.2 GHz to 10.8 GHz with low insertion loss of 0.9 dB and less than 0.19 dB at the center frequency (6.67 GHz). The filter is also designed with a broad upper stopband with high rejection level of 20 dB. The group delay is flat with maximum of 0.4 ns. The proposed UWB filter is constructed by using a pair of parallel coupled lines and two ring resonators. In this design, the ring resonators provide two new excited modes to widen the desired UWB passband and also create two tunable transmission zeros to achieve a wide stopband. Good agreement is observed between simulated and measured performances of the UWB filter.
Citation
Xiuping Li, Qi Xia, and Junjie Zeng, "A Compact Quadruple-Mode Ultra-Wideband Bandpass Filter with a Broad Upper Stopband Based on Transversal-Signal Interaction Concepts," Progress In Electromagnetics Research Letters, Vol. 69, 119-125, 2017.
doi:10.2528/PIERL17010204
References

1. Federal Communications Commission (FCC) "Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems,", First Report and Order, FCC02. V48, 2002.
doi:10.2528/PIER07082302

2. Chen, H. and Y. X. Zhang, "A novel and compact UWB bandpass filter using microstrip fork-form resonators," Progress In Electromagnetics Research, Vol. 77, 273-280, 2007.
doi:10.2528/PIER13120409

3. Peng, H., J. D. Zhao, and B. Wang, "Compact microstrip UWB bandpass filter with triple-notched bands and wide upper stopband," Progress In Electromagnetics Research, Vol. 144, 185-191, 2014.
doi:10.2528/PIER13053007

4. Khalid, S., W. P. Wen, and L. Y. Cheong, "A novel synthesis procedure for ultrawideband (UWB) bandpass filters," Progress In Electromagnetics Research, Vol. 141, 249-266, 2013.
doi:10.1109/LMWC.2009.2013735

5. Wong, S. W. and L. Zhu, "Quadruple-mode UWB band-pass filter with improved out-of-band rejection," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 3, 152-154, 2009.
doi:10.1109/LMWC.2005.859011

6. Zhu, L., S. Sun, and W. Menzel, "Ultra-wideband (UWB) band-pass filters using multiple-mode resonator," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 11, 796-798, 2005.
doi:10.1109/LMWC.2013.2287231

7. Li, X. P. and X. Ji, "Novel compact UWB band-pass filters design with cross-coupling between short-circuited stubs," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 1, 2325, 2014.
doi:10.1109/LMWC.2013.2287231

7. Li, X. P. and X. Ji, "Novel compact UWB band-pass filters design with cross-coupling between short-circuited stubs," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 1, 2325, 2014.
doi:10.1049/el.2009.1364

8. Liu, Y., C. H. Liang, and Y. J. Wang, "Ultra-wideband band-pass filter using hybrid quasi-lumped elements and defected ground structure," IET Electronics Letters, Vol. 45, No. 17, 899-900, 2009.
doi:10.1109/TMTT.2007.908671

9. Tang, C. W. and M. G. Chen, "A microstrip ultra-wideband band-pass filter with cascaded broadband band-pass and band-stop filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 11, 2412-2418, 2007.
doi:10.1109/LMWC.2010.2047469

10. Lee, J. K. and Y. S. Kim, "Ultra-wideband band-pass filter with improved upper stopband performance using defected ground structure," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 6, 316-318, 2010.
doi:10.2528/PIER10070403

11. Huang, J.-Q. and Q.-X. Chu, "Compact UWB band-pass filter utilizing modified composite right/left-handed structure with cross coupling," Progress In Electromagnetics Research, Vol. 107, 179-186, 2010.
doi:10.1109/LMWC.2007.899312

12. Hung, C. Y., M. H. Weng, R. Y. Yang, and Y. K. Su, "Design of the compact parallel coupled wideband bandpass filter with very high selectivity and wide stopband," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 7, 510-512, July 2007.
doi:10.1109/LMWC.2016.2558039

13. Lan, S.-W., M.-H. Weng, C.-Y. Hung, and S.-J. Chang, "Design of a compact ultra-wideband bandpass filter with an extremely broad stopband region," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 6, 894-896, June 2016.

14. Zhu, L., S. Sun, and R. Li, Microwave Bandpass Filters for Wideband Communications, Wiley, 2001.
doi:10.1049/el.2011.2658

15. Feng, W. J., W. Q. Che, and T. F. Eibert, "Ultra-wideband bandpass filter based on transversal signal-interaction concepts," IET Electronics Letters, Vol. 47, No. 24, 1330-1331, 2011.