Vol. 66
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-03-03
A New Approach to Design of Dual-Band Power Divider Using Admittance Matrix
By
Progress In Electromagnetics Research Letters, Vol. 66, 85-91, 2017
Abstract
A new approach to design of a dual-band power divider with only one section transmission line is proposed. Apart from the isolation resistor, admittance matrix is used to synthesize the dual-band divider. According to the required admittance matrixes at two frequencies, a modified configuration with shunting open/short stubs at each port is presented. A new compact dual-band (operating at 1.0 GHz and 4.5 GHz) is developed to validate this proposal. Experimental results demonstrate that the return loss is better than -19.2 dB, insertion loss less than 0.59 dB, and isolation better than 23.61 dB at two operation frequencies. The measured relative bandwidths of 15 dB return loss are 35.9% and 12.4% for the lower and higher bands, respectively.
Citation
Yinong Yan, Ting Luo, Ruifang Su, and Jing Lu, "A New Approach to Design of Dual-Band Power Divider Using Admittance Matrix," Progress In Electromagnetics Research Letters, Vol. 66, 85-91, 2017.
doi:10.2528/PIERL16123104
References

1. Monzon, C., "A small dual-frequency transformer in two sections," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 4, 1157-1161, Apr. 2003.
doi:10.1109/TMTT.2003.809675

2. Srisathit, S., M. Chongcheawchamnan, and A. Worapishet, "Design and realization of dual-band 3 dB power divider based on two-section trans-mission-line topology," Electron. Lett., Vol. 39, No. 9, 723-724, May 2003.
doi:10.1049/el:20030483

3. Wu, L., H. Yilmaz, T. Bitzer, A. Pascht, and M. Berroth, "A dual-frequency Wilkinson power divider: For a frequency and its first harmonic," IEEE Microw. Wireless Compon. Lett., Vol. 5, No. 2, 107-109, Feb. 2005.
doi:10.1109/LMWC.2004.842848

4. Wu, L., S. Sun, H. Yilmaz, and M. Berroth, "A dual-frequency Wilkinson power divider," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 1, 278-284, Jan. 2006.
doi:10.1109/TMTT.2005.860300

5. Bai, Y.-F., X.-H. Wang, C.-J. Gao, X.-W. Shi, and H.-J. Lin, "Compact dual-band power divider using non-uniform transmission line," Electron. Lett., Vol. 47, No. 3, 188-190, Feb. 3, 2011.
doi:10.1049/el.2010.3238

6. Liu, Y. C., W. H. Chen, X. Li, and Z. H. Feng, "Design of compact dual-band power dividers with frequency-dependent division ratios based on multisection coupled line," IEEE Trans. Compon., Packag. Manuf. Technol., Vol. 3, No. 3, 467-475, Mar. 2013.
doi:10.1109/TCPMT.2012.2220140

7. Huang, K., S. Zhang, and L. Bei, "A novel symmetrical Wilkinson power divider for dual-band application," Microwave Comput-Aided Eng., Vol. 24, No. 1, 102-108, Jan. 2014.
doi:10.1002/mmce.20718

8. Gao, N. J., G. A. Wu, and Q. H. Tang, "Design of a novel compact dual-band Wilkinson power divider with wide frequency ratio," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 2, 81-83, Feb. 2015.
doi:10.1109/LMWC.2013.2290226