Vol. 66
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-02-13
A Compact UWB BPF with Sharp Roll-off Using CPW to Microstrip Transition Structure
By
Progress In Electromagnetics Research Letters, Vol. 66, 33-38, 2017
Abstract
In this letter, a compact ultra-wideband (UWB) bandpass filter based on CPW-to-microstrip transition structure is proposed. Compared with traditional UWB BPF using hybrid structures, the proposed filter has a more sharp selectivity due to a transmission zero located at the lower edge of the passband generated by the combined effect of both CPW-MS-CPW and interdigital coupling line (ICL). Moreover, to further improve its selectivity, the CPW open stubs (CPWOS) are introduced to produce two extra transmission zeros at high frequency. The measured results show that the proposed filter has some good characteristics such as sharp roll-off, compact size (0.54λg × 0.38λg) and a very wide fractional bandwidth of 130%, which is a significant improvement to what has been reported for UWB BPF with similar structures.
Citation
Xinlin Xia, Yu Liu, Hao Peng, Minghuan Ni, Haodong Lin, and Tao Yang, "A Compact UWB BPF with Sharp Roll-off Using CPW to Microstrip Transition Structure," Progress In Electromagnetics Research Letters, Vol. 66, 33-38, 2017.
doi:10.2528/PIERL16123003
References

1. Federal Communications Commission "Revision of Part 15 of the commission’s rules regarding ultra-wideband transmission systems,", First Report and Order, FCC 02, V48, Apr. 2002.
doi:10.1002/mop.29303

2. Jhariya, D., A. R. Azad, A. Mohan, and M. Sinha, "A compact modified U-shaped UWB bandpass filter," Microw. Opt. Technol. Lett., Vol. 57, No. 9, 2172-2175, Sep. 2015.
doi:10.1049/el.2015.2937

3. Zhang, T., F. Xiao, J. Bao, and X. Tang, "Compact ultra-wideband bandpass filter with good selectivity," Electron. Lett., Vol. 52, No. 3, 210-212, Feb.-Nov. 2016.
doi:10.1049/el.2011.2658

4. Feng, W. J., W. Q. Che, and T.-F. Eibert, "Ultra-wideband bandpass filter based on transversal signal-interaction concepts," Electron. Lett., Vol. 47, No. 24, 1330-1331, Nov. 2011.
doi:10.1049/el.2012.4203

5. Mirzaee, M. and B. S. Virdee, "UWB bandpass filter with notch-band based on transversal signal-interaction concepts," Electron. Lett., Vol. 49, No. 6, 399-401, Mar. 2013.
doi:10.1049/el:20060789

6. Hu, H. L., X. D. Huang, and C. H. Cheng, "Ultra-wideband bandpass filter using CPW-to-microstrip coupling structure," Electron. Lett., Vol. 42, No. 10, 586-587, Mar. 2006.
doi:10.1002/mop.27663

7. Wang, K., S. M. Wong, and Q.-X. Chu, "A compact UWB CPW bandpass filter with short-ended H-shaped resonator and controllable notched band," Microwave. Opt. Technol. Lett., Vol. 55, No. 7, 1577-1581, 2013.
doi:10.2528/PIERL16092802

8. Lin, H., X. Xia, Z. Guo, and T. Yang, "Compact UWB filter with high selectivity and a deep notched band," Progress In Electromagnetics Research Letters, Vol. 63, 123-128, 2016.
doi:10.1002/mop.29551

9. Ghazali, A. N., M. Sazid, and S. Pal, "A miniaturized microstrip-to-CPW transition based UWB-BPF with shaped roll-off and minimum insertion loss," Microw. Opt. Technol. Lett., Vol. 58, No. 2, 289-293, Feb. 2016.
doi:10.1049/el.2015.0958

10. Ghazali, A. N., M. Sazid, and S. Pal, "Compact broadband balun-based UWB-BPF with minimum insertion loss and sharp selectivity," Electron. Lett., Vol. 51, No. 15, 1174-1175, Jul. 2015.
doi:10.1163/156939310791285254

11. Fallahzadeh, S. and M. Tayarani, "A new microstrip UWB bandpass filter using defected microstrip structures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 893-902, 2010.
doi:10.1587/elex.13.20160165

12. Lin, H., H. Peng, X. Xia, T. Yang, and H. Jin, "A novel ultra-wideband bandpass filter using defected microstrip structures," IEICE Electron. Expr., Vol. 13, No. 7, 1-6, Apr. 2016.
doi:10.1163/156939309789566950

13. Tang, I.-T., D.-B. Lin, C.-M. Li, and M.-Y. Chiu, "Compact Pentagon ultra-wideband bandpass filter with good out-of-band performance," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1695-1706, 2009.