Vol. 55
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-03-23
Almost Periodic Lumped Elements Structure Modeling Using Iterative Method: Application to Photonic Jets and Planar Lenses
By
Progress In Electromagnetics Research M, Vol. 55, 121-132, 2017
Abstract
In this work, we show that it is possible to produce a planar electromagnetic jet using a flat structure consisting of elementary cells based on lumped elements and fed with a source line. A combination of elementary cells may represent a gradient index, locating the electromagnetic energy in a small area, consisting of a few cells and having a size of about 0.75λ. The theoretical framework of the study is based on the Wave Concept Iterative Process method (WCIP) formulated in both spectral and spatial domains. An analogy with an optical model based on optical paths equality enables predicting the location of formation of this spot. The use of such a system can provide solutions for the development of new kinds of applications such as engraving sub-wavelength, data storage, improved scalpel optics for ultra-precise laser surgery, and detection of cancer.
Citation
Mohamed Karim Azizi, Henri Baudrand, Taieb Elbellili, and Ali Gharsallah, "Almost Periodic Lumped Elements Structure Modeling Using Iterative Method: Application to Photonic Jets and Planar Lenses," Progress In Electromagnetics Research M, Vol. 55, 121-132, 2017.
doi:10.2528/PIERM16121906
References

1. Chen, Z., A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express, Vol. 12, No. 7, 1214-1220, 2004.
doi:10.1364/OPEX.12.001214

2. Kim, M.-S., T. Scharf, S. M¨uhlig, C. Rockstuhl, and H. P. Herzig, "Engineering photonic nanojets," Opt. Express, Vol. 19, No. 11, 10206, 2011.
doi:10.1364/OE.19.010206

3. Wang, Z., W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, "Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope," Nat. Commun., Vol. 2, 218, 2011.
doi:10.1038/ncomms1211

4. Dantham, V. R., P. B. Bisht, and C. K. R. Namboodiri, "Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere," Journal of Applied Physics, Vol. 109, No. 10, 2011.
doi:10.1063/1.3590156

5. Kong, S.-C., A. Sahakian, A. Taflove, and V. Backman, "Photonic nanojet-enabled optical data storage," Opt. Express, Vol. 16, No. 18, 13713, 2008.
doi:10.1364/OE.16.013713

6. Heifetz, A., S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, "Photonic nanojets," Journal of Computational and Theoretical Nanoscience, Vol. 6, No. 9, 1979-1992, 2009.
doi:10.1166/jctn.2009.1254

7. Chen, Z., A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express, Vol. 12, No. 7, 1214-1220, 2004.
doi:10.1364/OPEX.12.001214

8. Li, X., Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express, Vol. 13, No. 2, 526-533, 2005.
doi:10.1364/OPEX.13.000526

9. Lecler, S., Y. Takakura, and P. Meyrueis, "Properties of a three-dimensional photonic jet," Opt. Lett., Vol. 30, No. 19, 2641-2643, 2005.
doi:10.1364/OL.30.002641

10. Itagi, A. V. and W. A. Challener, "Optics of photonic nanojets," J. Opt. Soc. Am. A. Opt. Image Sci. Vis., Vol. 22, No. 12, 2847-58, 2005.
doi:10.1364/JOSAA.22.002847

11. Ammar, N., T. Aguili, H. Baudrand, B. Sauviac, and B. Ounnas, "Wave concept iterative process method for electromagnetic or photonic jets: Numerical and experimental results," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 1, 2015.
doi:10.1109/TAP.2015.2486800

12. Ju, D., H. Pei, Y. Jiang, and X. Sun, "Controllable and enhanced nanojet effects excited by surface plasmon polariton," Appl. Phys. Lett., Vol. 102, 171109, 2013.
doi:10.1063/1.4802958

13. Khaleque, A. and Z. Li, "Tailoring the properties of photonic nanojets by changing the material and geometry of the concentrator," Progress In Electromagnetics Research Letters, Vol. 48, 7-13, 2014.
doi:10.2528/PIERL14052108

14. Chen, Z., X. Li, A. Taflove, and V. Backman, "Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks," Appl. Opt., Vol. 45, No. 4, 633-638, 2006.
doi:10.1364/AO.45.000633

15. Godi, G., R. Sauleau, and D. Thouroude, "Performance of reduced size substrate lens antennas for millimeter-wave communications," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1278-1286, 2005.
doi:10.1109/TAP.2005.844420

16. Boriskin, A. V., A. Rolland, R. Sauleau, and A. I. Nosich, "Assessment of FDTD accuracy in the compact hemielliptic dielectric lens antenna analysis," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 758-764, 2008.
doi:10.1109/TAP.2008.916950

17. Azizi, M. K., N. Sboui, F. Choubani, and A. Gharsallah, "A novel design of photonic band gap by F.W.C.I.P method," 2008 2nd International Conference on Signals, Circuits and Systems, SCS 2008, 2008.

18. Latrach, L., M. Karim Azizi, A. Gharsallah, and H. Baudrand, "Study of one dimensional almost periodic structure using a novel WCIP method," International Journal on Communications Antenna and Propagation (I.Re.C.A.P.), Vol. 4, No. 6, December 2014, ISSN 2039–5086.

19. Baudrand, H. and R. S. N'gongo, "Applications of wave concept iterative procedure," Recent Res. Devel. Microwave Theory Tech., Vol. 1, 187-197, 1999.

20. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

21. Baudrand, H., M. K. Azizi, and M. Titaouine, General Principles of the Wave Concept Iterative Process, 1-42, John Wiley & Sons, Inc, September 2016.

22. Baudrand, H., N. Raveu, and M. Titaouine, The Wave Concept in Electromagnetism and Circuits: Theory and Applications, ISTE Ltd 2016, ISTE Ltd and John Wiley & Sons, Inc, September 2016.
doi:10.1002/9781119332701

23. Azizi, M. K., L. Latrach, N. Raveu, A. Gharsallah, and H. Baudrand, "A new approach of almost periodic lumped elements circuits by an iterative method using auxiliary sources," Am. J. Appl. Sci., Vol. 10, No. 11, 1457-1472, 2013.
doi:10.3844/ajassp.2013.1457.1472