Vol. 56
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-04-13
Diagonal Factorization of Integral Equation Matrices via Localizing Sources and Orthogonally Matched Receivers
By
Progress In Electromagnetics Research M, Vol. 56, 1-10, 2017
Abstract
A procedure is reported to determine accurate, invertible, block-diagonal factorizations for matrices obtained by discretizing integral equation formulations of electromagnetic interaction problems. The algorithm is based on the combination of localizing source/receiver transformations with orthogonally matched receiver/source transformations. The resulting factorization provides a single, sparse data structure for the system matrix and its inverse, and no approximation is required to convert between the two. Numerical examples illustrate the performance of the factorization for electromagnetic scattering from perfectly conducting elliptical cylinders of different electrical size.
Citation
Robert Adams, and John C. Young, "Diagonal Factorization of Integral Equation Matrices via Localizing Sources and Orthogonally Matched Receivers," Progress In Electromagnetics Research M, Vol. 56, 1-10, 2017.
doi:10.2528/PIERM16121201
References

1. Gope, D., I. Chowdhury, and V. Jandhyala, "DiMES: Multilevel fast direct solver based on multipole expansions for parasitic extraction of massively coupled 3D microelectronic structures," 42nd Design Automation Conference, 159-162, 2005.

2. Shaeffer, J., "Direct solve of electrically large integral equations for problems sizes to 1M unknowns," IEEE Transactions on Antennas and Propagation, Vol. 56, 2306-2313, 2008.
doi:10.1109/TAP.2008.926739

3. Jiao, D. and W. Chai, "An H2-matrix-based integral-equation solver of reduced complexity and controlled accuracy for solving electrodynamic problems," IEEE Transactions on Antennas and Propagation, Vol. 57, 3147-3159, 2009.
doi:10.1109/TAP.2009.2028665

4. Heldring, A., J. M. Rius, J. M. Tamayo, J. Parron, and E. Ubeda, "Multiscale compressed block decomposition for fast direct solution of method of moments linear system," IEEE Transactions on Antennas and Propagation, Vol. 59, 526-536, 2011.
doi:10.1109/TAP.2010.2096385

5. Wei, J.-G., Z. Peng, and J. F. Lee, "A fast direct matrix solver for surface integral equation methods for electromagnetic wave scattering from non-penetrable targets," Radio Science, Vol. 47, 1-9, 2012.
doi:10.1029/2012RS004988

6. Brick, Y., V. Lomakin, and A. Boag, "Fast direct solver for essentially convex scatterers using multilevel non-uniform grids," IEEE Transactions on Antennas and Propagation, Vol. 62, 4314-4324, 2015.
doi:10.1109/TAP.2014.2327651

7. Zhang, Y. L., X. Chen, C. Fei, Z. Li, and C. Gu, "Fast direct solution of composite conducting-dielectric arrays using Sherman-Morrison-Woodbury algorithm," Progress In Electromagnetics Research M, Vol. 49, 203-209, 2016.
doi:10.2528/PIERM16071202

8. Martinsson, P. G. and V. Rokhlin, "A fast direct solver for boundary integral equations in two dimensions," Journal of Computational Physics, Vol. 205, 1-23, 2005.
doi:10.1016/j.jcp.2004.10.033

9. Adams, R. J., A. Zhu, and F. X. Canning, "Efficient solution of integral equations in a localizing basis," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 12, 1583-1594, 2005.
doi:10.1163/156939305775537438

10. Zhu, A., R. J. Adams, F. X. Canning, and S. D. Gedney, "Schur factorization of the impedance matrix in a localizing basis," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 351-362, 2006.
doi:10.1163/156939306775701803

11. Adams, R. J., A. Zhu, and F. X. Canning, "Sparse factorization of the TMz impedance matrix in an overlapped localizing basis," Progress In Electromagnetics Research, Vol. 61, 291-322, 2006.
doi:10.2528/PIER06022402

12. Adams, R. J., Y. Xu, X. Xu, J. S. Choi, S. D. Gedney, and F. X. Canning, "Modular fast direct electromagnetic analysis using local-global solution modes," IEEE Transactions on Antennas and Propagation, Vol. 56, 2427-2441, Aug. 2008.
doi:10.1109/TAP.2008.926769

13. Xu, X. and R. J. Adams, "Sparse matrix factorization using overlapped localizing LOGOS modes on a shifted grid," IEEE Transactions on Antennas and Propagation, Vol. 60, 1414-1424, 2012.
doi:10.1109/TAP.2011.2180312

14. Adams, R. J. and J. C. Young, "A diagonal factorization for integral equation matrices," 2016 International Conference on Electromagnetics in Advanced Applications (ICEAA), 812-815, September 19-23, 2016.

15. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, IEEE Press, 1998.

16. Hackbusch, W. and S. Borm, "H2-matrix approximation of integral operators by interpolation," Applied Numerical Mathematics, Vol. 43, 129-143, 2002.
doi:10.1016/S0168-9274(02)00121-6

17. Xu, Y., X. Xu, and R. J. Adams, "A sparse factorization for fast computation of localizing modes," IEEE Transactions on Antennas and Propagation, Vol. 58, 3044-3049, 2010.
doi:10.1109/TAP.2010.2052549

18. Qian, Z. G. and W. C. Chew, "An augmented electric field integral equation for highspeed interconnect analysis," Microwave and Optical Technology Letters, Vol. 50, 2658-2662, October 2008.

19. Qian, Z. G. and W. C. Chew, "Enhanced A-EFIE with perturbation method," IEEE Transactions on Antennas and Propagation, Vol. 58, 3256-3264, October 2010.

20. Cheng, J. and R. J. Adams, "Direct solution method using overlapped localizing LOGOS modes for AEFIE-G at low frequencies," 28th Annual Review of Progress in Applied Computational Electromagnetics, 579-584, Columbus, Ohio, 2012.