Vol. 53
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-01-30
A Fast Equivalent Method for Modeling Electromagnetic Pulse Response of Cable Bundle Terminated in Arbitrary Loads
By
Progress In Electromagnetics Research M, Vol. 53, 177-190, 2017
Abstract
An effective fast equivalent cable bundle modeling method is proposed in this paper to study electromagnetic pulse response of complex cable bundle. Compared with traditional equivalent cable bundle method (ECBM), the complete cable bundle is equivalent to only one cable by modification of cable grouping method, which leads to reduction in number of cables and computation progress. The proposed method can perform well not only in pure resistance case, but also in frequency dependent load case by weighted average method (WAM). The computation time and memory acquirement for complete cable bundle model terminated in arbitrary loads have been further reduced by fast equivalent method compared to ECBM, and calculation precision is maintained to meet fast application need. Numerical simulation of coupled currents in observed cable located at a certain distance away from cable bundle by CST software is given to verify accuracy of the method under illumination of high altitude electromagnetic pulse (HEMP).
Citation
Yafei Huo, Yu Zhao, and Zhuohang Li, "A Fast Equivalent Method for Modeling Electromagnetic Pulse Response of Cable Bundle Terminated in Arbitrary Loads," Progress In Electromagnetics Research M, Vol. 53, 177-190, 2017.
doi:10.2528/PIERM16120301
References

1. Hyun, S., J. Du, and H. Lee, "Analysis of shielding effectiveness of reinforced concrete against high-altitude electromagnetic pulse," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 6, 1-9, 2014.
doi:10.1109/TEMC.2014.2322911

2. Song, S. T., H. Jiang, and Y. L. Huang, "Simulation and analysis of HEMP coupling effect on a wire inside an apertured cylindrical shielding cavity," Applied Computational Electromagnetics Society Journal, Vol. 27, No. 6, 505-515, 2012.

3. Zhou, B., B. Chen, and L. Shi, EMP and EMP Protection, National Defence Industry Press, 2003.

4. Cai, J., X. Sun, and X. Zhao, "Effects of windows to the electromagnetic environment of a car radiated by high altitude electromagnetic pulse," 2015 IEEE International Conference on Computer and Communications (ICCC), 207-211, Chengdu, 2015.

5. Gu, C., Z. Shao, Z. Li, et al. "Equivalent method for analyzing crosstalk of cable bundles," Chinese Journal of Radio Science, Vol. 3, 509-514, 2011.

6. Andrieu, G., L. Koné, F. Bocquet, B. Démoulin, and J. P. Parmantier, "Multiconductor reduction technique for modeling common-mode currents on cable bundles at high frequency for automotive applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 1, 175-184, Feb. 2008.
doi:10.1109/TEMC.2007.911914

7. Andrieu, G., A. Reineix, X. Bunlon, J. P. Parmantier, L. Koné, and B. Démoulin, "Extension of the ``Equivalent cable bundle method'' for modeling electromagnetic emissions of complex cable bundles," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 1, 108-118, Feb. 2009.
doi:10.1109/TEMC.2008.2007803

8. Andrieu, G., X. Bunlon, L. Kon'e, J. P. Parmantier, B. D'emoulin, and A. Reineix, "The `Equivalent cable bundle method': An efficient multiconductor reduction technique to model industrial cable networks," New Trends and Developments in Automotive System Engineering, InTech, Manhattan, NY, Jan. 2011.

9. Li, Z., Z. J. Shao, J. Ding, Z. Y. Niu, and C. Q. Gu, "Extension of the ``equivalent cable bundle method'' for modeling crosstalk of complex cable bundles," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 4, 1040-1049, Nov. 2011.
doi:10.1109/TEMC.2011.2146258

10. Liu, L. L., Z. Li, J. Yan, and C. Q. Gu, "Simplification method for modeling crosstalk of multicoaxial cable bundles," Progress In Electromagnetics Research, Vol. 135, 281-296, 2013.
doi:10.2528/PIER12111404

11. Liu, L. L., Z. Li, J. Yan, and C. Q. Gu, "Application of the ``equivalent cable bundle method'' for modeling crosstalk of complex cable bundles within uniform structure with arbitrary cross-section," Progress In Electromagnetics Research, Vol. 141, 135-148, 2013.

12. Li, Z., L. L. Liu, and C. Q. Gu, "Generalized equivalent cable bundle method for modeling EMC issues of complex cable bundle terminated in arbitrary loads," Progress In Electromagnetics Research, Vol. 123, 13-30, 2012.
doi:10.2528/PIER11102601

13. Liu, L., Z. Li, M. Cao, and C. Gu, "A generalized equivalent cable bundle method for modeling crosstalk of complex cable bundles with multiple excitations," 2012 Asia-Pacific Symposium on Electromagnetic Compatibility, 269-272, Singapore, 2012.

14. Andrieu, G., S. Bertuol, X. Bunlon, J. Parmantier, and A. Reineix, "Discussions about automotive application of the `equivalent cable bundle method' in the high frequency domain," 20th Int. Zurich Symposium on EMC Proceedings, Zurich, 2009.

15. Tesche, F. M., M. V. lanoz, and T. Karlason, EMC Analysis Methods and Computational Models, Beijing University of Posts and Telecommunications Press, 2009.