1. Hyun, S., J. Du, and H. Lee, "Analysis of shielding effectiveness of reinforced concrete against high-altitude electromagnetic pulse," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 6, 1-9, 2014.
doi:10.1109/TEMC.2014.2322911
2. Song, S. T., H. Jiang, and Y. L. Huang, "Simulation and analysis of HEMP coupling effect on a wire inside an apertured cylindrical shielding cavity," Applied Computational Electromagnetics Society Journal, Vol. 27, No. 6, 505-515, 2012.
3. Zhou, B., B. Chen, and L. Shi, EMP and EMP Protection, National Defence Industry Press, 2003.
4. Cai, J., X. Sun, and X. Zhao, "Effects of windows to the electromagnetic environment of a car radiated by high altitude electromagnetic pulse," 2015 IEEE International Conference on Computer and Communications (ICCC), 207-211, Chengdu, 2015.
5. Gu, C., Z. Shao, Z. Li, et al. "Equivalent method for analyzing crosstalk of cable bundles," Chinese Journal of Radio Science, Vol. 3, 509-514, 2011.
6. Andrieu, G., L. Koné, F. Bocquet, B. Démoulin, and J. P. Parmantier, "Multiconductor reduction technique for modeling common-mode currents on cable bundles at high frequency for automotive applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 1, 175-184, Feb. 2008.
doi:10.1109/TEMC.2007.911914
7. Andrieu, G., A. Reineix, X. Bunlon, J. P. Parmantier, L. Koné, and B. Démoulin, "Extension of the ``Equivalent cable bundle method'' for modeling electromagnetic emissions of complex cable bundles," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 1, 108-118, Feb. 2009.
doi:10.1109/TEMC.2008.2007803
8. Andrieu, G., X. Bunlon, L. Kon'e, J. P. Parmantier, B. D'emoulin, and A. Reineix, "The `Equivalent cable bundle method': An efficient multiconductor reduction technique to model industrial cable networks," New Trends and Developments in Automotive System Engineering, InTech, Manhattan, NY, Jan. 2011.
9. Li, Z., Z. J. Shao, J. Ding, Z. Y. Niu, and C. Q. Gu, "Extension of the ``equivalent cable bundle method'' for modeling crosstalk of complex cable bundles," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 4, 1040-1049, Nov. 2011.
doi:10.1109/TEMC.2011.2146258
10. Liu, L. L., Z. Li, J. Yan, and C. Q. Gu, "Simplification method for modeling crosstalk of multicoaxial cable bundles," Progress In Electromagnetics Research, Vol. 135, 281-296, 2013.
doi:10.2528/PIER12111404
11. Liu, L. L., Z. Li, J. Yan, and C. Q. Gu, "Application of the ``equivalent cable bundle method'' for modeling crosstalk of complex cable bundles within uniform structure with arbitrary cross-section," Progress In Electromagnetics Research, Vol. 141, 135-148, 2013.
12. Li, Z., L. L. Liu, and C. Q. Gu, "Generalized equivalent cable bundle method for modeling EMC issues of complex cable bundle terminated in arbitrary loads," Progress In Electromagnetics Research, Vol. 123, 13-30, 2012.
doi:10.2528/PIER11102601
13. Liu, L., Z. Li, M. Cao, and C. Gu, "A generalized equivalent cable bundle method for modeling crosstalk of complex cable bundles with multiple excitations," 2012 Asia-Pacific Symposium on Electromagnetic Compatibility, 269-272, Singapore, 2012.
14. Andrieu, G., S. Bertuol, X. Bunlon, J. Parmantier, and A. Reineix, "Discussions about automotive application of the `equivalent cable bundle method' in the high frequency domain," 20th Int. Zurich Symposium on EMC Proceedings, Zurich, 2009.
15. Tesche, F. M., M. V. lanoz, and T. Karlason, EMC Analysis Methods and Computational Models, Beijing University of Posts and Telecommunications Press, 2009.