Vol. 54
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-02-06
Capturing Surface Electromagnetic Energy into a DC through Single-Conductor Transmission Line at Microwave Frequencies
By
Progress In Electromagnetics Research M, Vol. 54, 29-36, 2017
Abstract
This communication demonstrates the feasibility of rectifying microwave energy through one-wire with no earth return. In the proposed transmission system, a novel coaxial to Goubau line transition (referred thereafter as coaxial/G-line transition) was employed to transfer microwave power from TEM modes in a coaxial line to TM modes in a Goubau line. The captured signal at the receiving end of the Goubau line can be either directly used for communication or rectified into a DC. The proposed system can be used as an emergency source of power supply for cable cars, escalators and window cleaning gondolas in the event of accidents. According to our experimental results, a 0 dBm microwave signal can be transmitted through a single conductor of 13 cm in length with an insertion loss of less than 3 dB. When the input power was raised to 15 dBm, the electromagnetic energy at the receiving end can be rectified at 1.36 GHz into a DC with the efficiency at approximately 12.7%.
Citation
Louis Wai Yip Liu, Shangkun Ge, Qingfeng Zhang, and Yifan Chen, "Capturing Surface Electromagnetic Energy into a DC through Single-Conductor Transmission Line at Microwave Frequencies," Progress In Electromagnetics Research M, Vol. 54, 29-36, 2017.
doi:10.2528/PIERM16120207
References

1. Cannon, B. L., J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, "Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers," IEEE Transactions on Power Electronics, Vol. 24, No. 7, 1819-1825, Jul. 2009.
doi:10.1109/TPEL.2009.2017195

2. Elmore, G., "Method and apparatus for launching a surfacewave onto a single conductor transmission line using a slotted flared cone,", U.S. Patent 7,009,471, 2013.

3. Elmore, G., "Surface wave transmission system over a single conductor having E-fields terminating along the conductor,", U.S. Patent 7,567,154, 2009.

4. Elmore, G., "E-Line," Corridor Systems, Jul. 27, 2009.

5. Sommerfeld, A., "Über die Fortpflanzung elektrodynamischer Wellen längs eines Drahtes," Ann. der Physik und Chemie, Vol. 67, 233-290, Dec. 1899, (Tr. Propagation of electro-dynamic waves along a cylindric conductor).

6. Sommerfeld, A., "Über die Ausbreitung der Wellen in der drahtlosen Telegraphie," Annalen der Physik, Vol. 28, 665-736, Mar. 1909, (Tr. About the Propagation of waves in wireless telegraphy).
doi:10.1002/andp.19093330402

7. Sommerfeld, A., "Propagation of waves in wireless telegraphy," Ann. Phys., Vol. 81, 1153-1367, 1926.

8. Sommerfeld, A., Partial Differential Equations in Physics (English version), Ch. 6 - ``Problems of Radio,'' Academic Press Inc., New York, 1949.

9. Goubau, G., "Surface waves and their application to transmission lines," J. Appl. Phys., Vol. 21, 1119, Nov. 1950.

10. Goubau, G., Zeitschrift f¨ur Angewandte Physik, Vol. 3, Nrs. 3/4, 103, 1951.

11. George, J. E., "Goubau, Surface wave transmission line,", U.S. Patent 2,685,068, 1954.

12. Goubau, G. J. E., "Launching and receiving of surface waves,", U.S. Patent 2,921,277, 1960.

13. Jaisson, D., "Simple formula for the wave number of the Goubau line," Journal of Electromagnetics, Vol. 34, No. 2, 85, Taylor & Francis Group, LLC, Feb. 2014.
doi:10.1080/02726343.2013.863672

14. Siart, U., S. Adrian, and T. Eibert, "Properties of axial surface waves along dielectrically coated conducting cylinders," Adv. Radio Sci., 79-84, 2012.
doi:10.5194/ars-10-79-2012

15. Gunn, W. F., "Application possibilities of a surface wave mode," The Marconi Review, Vol. 15, No. 107, 145-166, 1952.

16. Avramenko, S. and K. Avramenko, "Method and apparatus for single line electrical transmission,", U.S. Patent 6,104,107, 2000.

17. Tesla, N., On Light and Other High Frequency Phenomena, Vol. CXXXVI, No. 2, Feb. 1893.

18. Akalin, T., "Single-wire transmission lines at terahertz frequencies," IEEE Transactions on Microwave Theory (IEEE-MTT), Vol. 54, No. 6, 2762, Jun. 2006.
doi:10.1109/TMTT.2006.874890

19. Wiltse, J. C., "Guided-wave propagation on a cylindrical conductor at millimeter-wave or terahertz frequencies," Proc. SPIE 6549, Terahertz for Military and Security Applications V, 65490G, May 04, 2007, doi:10.1117/12.720110.

20. Barlow, H. M., "The relative power-carrying capacity of high frequency waveguides," Proceedings of the IEE - Part III: Radio and Communication Engineering, Vol. 99, No. 57, Jan. 1952.
doi:10.1049/pi-3.1952.0005

21. Liu, L. W. Y., S. Ge, Q. Zhang, and Y. Chen, "Capturing cosmic rays using surface wave technologies," Proceedings of 2016 IEEE ICPRE, Part II, 644-647, 2016.

22. Miskovsky, N. M., P. H. Cutler, A. Mayer, B. L. Weiss, B. Willis, T. E. Sullivan, and P. B. Lerner, "Nanoscale devices for rectification of high frequency radiation from the infrared through the visible: A new approach," Journal of Nanotechnology, Vol. 2012, 19 pages, Article ID 512379, 2012.