Vol. 55
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-02-24
Effect of Solar Illumination on ESD for Structure Used in Spacecraft
By
Progress In Electromagnetics Research M, Vol. 55, 25-36, 2017
Abstract
This paper presents the effect of solar illumination on the differential potential generated on the surfaces of spacecraft body in space. Two geometrical cases are considered: 1) Cylindrical symmetry and 2) Tilted metallic plates forming an angle with the adjacent side. The capacitance required for estimation of the body potential is computed by Method of Moment. Nonuniform triangular meshing is used for both the geometrical structures. The differential potential generated on surfaces of a geometrical body due to photoelectric effect results in electrostatic discharge. In the case of the tilted plates, the differential potential at various tilt-angles is computed along with the capacitance computation. In the case of the cylindrical object, the estimation of potential at the day-night interface is shown. The variation in the potential for different incident angles of the solar photons and the changing (h/r) ratio is analyzed. The validity of the analysis is established with that obtained in open literature.
Citation
Rizwan Habibbhai Alad, Haely Shah, Soumyabrata B. Chakrabarty, and Dhairya Shah, "Effect of Solar Illumination on ESD for Structure Used in Spacecraft," Progress In Electromagnetics Research M, Vol. 55, 25-36, 2017.
doi:10.2528/PIERM16120107
References

1. Garrett, H. B. and A. C. Whittlesey, "Spacecraft charging, an update," IEEE Trans. Plasma Sci., Vol. 28, No. 6, 2017-2028, Dec. 2000.
doi:10.1109/27.902229

2. Garrett, H. B. and A. C. Whittlesey, Guide to Mitigating Spacecraft Charging Effects (JPL Space Science and Technology Series), 1-28, California Inst. Technol., Jun. 2011.

3. Hastings, D. and H. Garrett, Spacecraft-Environment Interactions, Cambridge University Press, 1996.
doi:10.1017/CBO9780511525032

4. Whipple, E. C., "Potentials of surfaces in space," Reports on Progress in Physics, Vol. 44, 1197-1250, 1981.
doi:10.1088/0034-4885/44/11/002

5. Fennell, J. F., J. L. Roeder, G. A. Berg, and R. K. Elsen, "HEO satellite frame and differential charging and SCATHA low-level frame charging," IEEE Trans. Plasma Sci., Vol. 36, No. 5, 2271-2279, Oct. 2008.
doi:10.1109/TPS.2008.2003441

6. Bedingfield, K. L., R. D. Leach, and M. B. Alexander, "Spacecraft system failures and anomalies attributed to the natural space environment," NASA Reference Publication 1390, NASA MSFC, 1996.

7. Leach, R. D. and M. B. Alexander, "Failures and anomalies attributed to spacecraft charging," NASA Reference Publication 1354, NASA Marshall Space Flight Center, Nov. 1994.

8. Minow, J. and L. Parker, "Spacecraft charging: Anomaly and failure mechanisms," Spacecraft Anomalies and Failures Workshop (NASA), Chantilly, VA, Jul. 2014.

9. Nakamura, M., "Space plasma environment at the ADEOS-II anomaly," Proc. 9th Spacecraft Charging Technol. Conf., Tsukuba, Japan, Apr. 4-8, 2005.

10. Kawakita, S., H. Kusawake, M. Takahashi, et al. "Investigation of operational anomaly of ADEOS-II satellite," Proc. 9th Spacecraft Charging Technol. Conf., Tsukuba, Japan, Apr. 4-8, 2005.

11. Mandell, M. J., V. A. Davis, D. L. Cooke, A. T. Wheelock, and C. J. Roth, "Nascap-2k spacecraft charging code overview," IEEE Trans. Plasma Sci., Vol. 34, No. 5, 2084-2093, Oct. 2006.
doi:10.1109/TPS.2006.881934

12. Muranaka, T., et al. "Development of Multi-Utility Spacecraft Charging Analysis Tool (MUSCAT)," IEEE Trans. Plasma Sci., Vol. 36, No. 5, 2336-2349, Oct. 2008.
doi:10.1109/TPS.2008.2003974

13. Roussel, J. F., F. Rogier, D. Volpert, J. Forest, G. Rousseau, and A. Hilgers, "Spacecraft Plasma Interaction Software (SPIS): Numerical solvers - Methods and architecture," Proc. Process. 9th Spacecraft Charg. Technol. Conf., 462-472, Tsukuba, Japan, Apr. 2005.

14. Mehta Prarthan, D. and S. B. Chakrabarty, "Capacitance of metallic bodies forming a corner," Journal of Applied Sciences, 2250-2254, 2011.

15. Alad, R. H. and S. Chakrabarty, "Electrostatic analysis of an artificial orbiting satellite for absolute charging," IEEE Trans. Plasma Sci., Vol. 43, No. 9, 2887-2893, Sept. 2015.
doi:10.1109/TPS.2015.2454054

16. Chakraborty, C., D. R. Poddar, A. Chakraborty, and B. N. Das, "Electrostatic charge distribution and capacitance of isolated cylinders and truncated cones in free space," IEEE Trans. on Electromagnetic Compatibility, Vol. 35, No. 1, 98-102, Feb. 1993.
doi:10.1109/15.249403

17. Mikaeline, T., "Spacecraft charging and hazards to electronics in space," Physics of the Space Environment, 1-28, York University, May 2001.

18. Hastings, D. and H. Garret, Spacecraft Environment Interactions, 168, Cambridge Atmospheric and Space Sciences Series, 1996.
doi:10.1017/CBO9780511525032

19. Gibson, W. C., The Method of Moments in Elecromagnetics, 33-48, 255-269, Chapman & Hall/CRC, Taylor & Francis Group, New York, Nov. 2007.