Vol. 65
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-01-27
Direct Application of Excitation Matrix as Sparse Transform for Analysis of Wide Angle EM Scattering Problems by Compressive Sensing
By
Progress In Electromagnetics Research Letters, Vol. 65, 131-137, 2017
Abstract
When compressive sensing was employed to solve electromagnetic scattering problems over wide incident angles, the selection of sparse transform strongly affects the efficiency of the CS algorithm. Different sparse transforms will require different numbers of measurement. Thus, constructing a highly efficient sparse transform is the most important work for the CS-based electromagnetic scattering computing. Based on the linear relation between current and excitation vectors over wide incident angles, we adopt the excitation matrix as sparse transform directly to obtain a suitable sparse representation of the induced currents. The feasibility and basic principle of the algorithm are elaborated in detail, and the performance of the proposed sparse transform is validated in numerical results.
Citation
Xin-Yuan Cao, Ming Sheng Chen, Meng Kong, Liang Zhang, Xian-Liang Wu, Xiangxiang Liu, Liangliang Cheng, Qi Qi, and Bingbing Chen, "Direct Application of Excitation Matrix as Sparse Transform for Analysis of Wide Angle EM Scattering Problems by Compressive Sensing," Progress In Electromagnetics Research Letters, Vol. 65, 131-137, 2017.
doi:10.2528/PIERL16112802
References

1. Yu, J. J. and X. Q. Sheng, "Scattering from 3-D targets in the subsurface using MOM," Journal of Electronics and Information Technology, Vol. 28, No. 5, 950-954, 2006.

2. Giuseppe, S. P., Finite Elements for Wave Electromagnetics Methods and Techniques, IEEE Press, 1994.

3. Ge, D. B. and Y. B. Yan, Finite-difference Time-domain Method for Electromagnetic Waves, Xidian University Press, 2011.

4. Yoshida, K., N. Nishimura, et al. "Application of new fast multipole boundary integral equation method to crack problems in 3D," Engineering Analysis with Boundary Elements, Vol. 25, No. 3, 239-247, 2001.
doi:10.1016/S0955-7997(01)00030-3

5. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855

6. Ewe, W. B., L. W. Li, et al. "AIM analysis of scattering and radiation by arbitrary surface-wire configurations," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 1, 162-166, 2007.
doi:10.1109/TAP.2006.888450

7. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

8. Chen, M. S., F. L. Liu, H. M. Du, and X. L. Wu, "Compressive sensing for fast analysis of wide-angle monostatic scattering problems," IEEE Antennas and Wireless Propagation Letters, Vol. 10, No. 3, 1243-1246, 2011.
doi:10.1109/LAWP.2011.2174190

9. Cao, X. Y., M. S. Chen, M. Kong, L. Zhang, and X. L. Wu, "Method of moments based on prior knowledge for solving wide angle EM scattering problems," Chinese Physics Letters, Vol. 31, No. 11, 118401, 2014.
doi:10.1088/0256-307X/31/11/118401

10. Cai, T. T. and L. Wang, "Orthogonal matching pursuit for sparse signal recovery with noise," IEEE Transactions on Information Theory, Vol. 57, No. 7, 4680-4688, 2011.
doi:10.1109/TIT.2011.2146090