Vol. 54
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-02-09
Scattering Analysis of Buried Objects by Using FDTD with Nonuniform Meshes
By
Progress In Electromagnetics Research M, Vol. 54, 83-90, 2017
Abstract
This paper presents a finite-difference time-domain (FDTD) method of the infinite half-space with nonuniform meshes, aiming to speed up the FDTD calculation of scattering of buried objects. Two 1-D modified FDTD equations are employed to set plane wave excitation of the infinite half-space scattering problems. In order to reduce calculation time and meshes, a method with nonuniform meshes is applied. Fine grids are used for the buried objects and underground while coarse grids are applied for other regions. The 1-D modified FDTD equations with nouniform meshes are derived, and the settings of total-field/scattering-field (TF-SF) boundary are given. Finally, the proposed method is applied to calculate the transient scattering field of a buried mine. Numerical results demonstrate the validity of the method and the simulation time is significantly reduced when compared with uniform meshes FDTD.
Citation
Min Zhang, Cheng Liao, Xiang-Zheng Xiong, and Xiaomin Xu, "Scattering Analysis of Buried Objects by Using FDTD with Nonuniform Meshes," Progress In Electromagnetics Research M, Vol. 54, 83-90, 2017.
doi:10.2528/PIERM16112307
References

1. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDTD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.2528/PIERB07112803

2. Hu, X.-J. and D.-B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902

3. Wang, M. Y., J. Xu, J.Wu, et al. "FDTD study on scattering of metallic column covered by double-negative metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1905-1914, 2007.
doi:10.1163/156939307783152777

4. Yang, L.-X., D.-B. Ge, and B. Wei, "FDTD/TDPO hybrid approach for analysis of EM scattering of combinative objects," Progress In Electromagnetics Research, Vol. 76, 275-284, 2007.
doi:10.2528/PIER07071206

5. Holland, R., "Two-pass finite-difference time-domain (FDTD) calculations on a fighter aircraft," IEEE Trans. Antennas Propag., Vol. 44, No. 5, 659-664, 1996.
doi:10.1109/8.496251

6. Yardim, F. E. and N. Akcam, "Estimation of radar cross-section in rayleigh, MIE, and optical regions by the 2-D-FDTD simulation," IEEE Trans. Antennas Propag., Vol. 62, No. 11, 5782-5789, 2014.
doi:10.1109/TAP.2014.2356210

7. Liu, Y. and L. X. Guo, "FDTD investigation on GPR detecting of underground subsurface layers and buried objects," 2016 IEEE MTT-S International Conference on NEMO, 1-2, 2016.

8. Fhager, A., S. K. Padhi, and J. Howard, "3D image reconstruction in microwave tomography using an efficient FDTD model," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1353-1356, 2009.
doi:10.1109/LAWP.2009.2039032

9. Öztürk, E., E. Basaran, and S. Aksoy, "Numerical modeling of ground penetrating radar," SubChapter in Subsurface Sensing Book, from J. Wiley & Sons Inc., 2011.

10. Wong, P., G. Tyler, J. Baron, E. Gurrola, and R. Simpson, "A three-wave FDTD approach to surface scattering with applications to remote sensing of geophysical surfaces," IEEE Trans. Antennas Propag., Vol. 44, No. 4, 504-513, 1996.
doi:10.1109/8.489302

11. Winton, S. C., P. Kosmas, and C. M. Rappaport, "FDTD simulation of TE and TM plane waves at nonzero incidence in arbitrary layered media," IEEE Trans. Antennas Propag., Vol. 53, No. 5, 1721-1728, 2005.
doi:10.1109/TAP.2005.846719

12. Jiang, Y. N., D. B. Ge, and S. J. Ding, "Analysis of TF-SF boundary for 2D-FDTD with plane P-wave propagation in layered dispersive and lossy media," Progress In Electromagnetics Research, Vol. 83, 157-172, 2008.
doi:10.2528/PIER08042201

13. Capoglu, I. R. and G. S. Smith, "A total-field/scattered-field plane-wave source for the FDTD analysis of layered media," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 158-169, 2008.
doi:10.1109/TAP.2007.913088

14. Demarest, K., Z. Huang, and R. Plumb, "An FDTD near- to far-zone transformation for scatterers buried in stratified grounds," IEEE Trans. Antennas Propag., Vol. 44, No. 8, 1150-1157, 1996.
doi:10.1109/8.511824

15. Hill, D. A., "Electromagnetic scattering by buried objects of low contrast," IEEE Trans. Geosci. Remote Sensing, Vol. 26, No. 2, 195-203, 1988.
doi:10.1109/36.3021