Vol. 53
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-01-26
2-d DOA Estimation of LFM Signals for UCA Based on Time-Frequency Multiple Invariance ESPRIT
By
Progress In Electromagnetics Research M, Vol. 53, 153-165, 2017
Abstract
In order to improve the angle measurement precision with a low computational complexity, a 2-D direction of arrival (DOA) estimation algorithm UCA-TF-MI-ESPRIT is proposed in this paper. This algorithm is based on the mode space algorithm and the time-frequency (TF) multiple invariance rotational invariance technique (MI-ESPRIT). Firstly, a uniform circular array (UCA) is equivalent to a virtual uniform linear array (ULA) by utilizing mode-space algorithm. Then, the smoothed pseudo Wigner-Ville distribution (SPWVD) of the ULA output is calculated. The spatial time-frequency matrix can be obtained through the average of multiple time-frequency points in the time-frequency plane, and the signal subspace can also be obtained through using eigen decomposition. Then a simple and effective subarray dividing approach is proposed, and the multiple rotational invariant equation of the array is obtained by using the Bessel function. Finally, the closed-form solution is obtained using multi-least-squares (MLS) criterion so that the 2-D DOA estimation of LFM signals in UCA is completed. The simulation results verify the effectiveness of the algorithm proposed by this paper.
Citation
Kaibo Cui, Weiwei Wu, Jingjian Huang, Xi Chen, and Nai-Chang Yuan, "2-d DOA Estimation of LFM Signals for UCA Based on Time-Frequency Multiple Invariance ESPRIT," Progress In Electromagnetics Research M, Vol. 53, 153-165, 2017.
doi:10.2528/PIERM16112208
References

1. Du, W., D. L. Su, S. G. Xie, and H. T. Hui, "A fast calculation method for the receiving mutual impedances of uniform circular arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 11, No. 2, 893-896, Aug. 2012.
doi:10.1109/LAWP.2012.2211329

2. Liao, B., K. M. Tsui, and S. C. Chan, "Frequency invariant uniform concentric circular arrays with directional elements," IEEE Transactions on Aerospace and Electronics Systems, Vol. 49, No. 2, 871-884, Apr. 2013.
doi:10.1109/TAES.2013.6494386

3. Jackson, B. R., S. Rajan, B. J. Liao, and S. C.Wang, "Direction of arrival estimation using directive antennas in uniform circular arrays," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 736-747, Feb. 2015.
doi:10.1109/TAP.2014.2384044

4. Pan, Y. J., X. F. Zhang, S. Y. Xie, J. J. Huang, and N. C. Yuan, "An ultra-fast DOA estimator with circular array interferometer using lookup table," Radioengineering, Vol. 24, No. 3, 850-856, Sep. 2015.
doi:10.13164/re.2015.0850

5. Wang, M., X. C. Ma, S. F. Yan, and C. P. Hao, "An autocalibration algorithm for uniform circular array with unknown mutual coupling," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 12-15, Apr. 2015.

6. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, Mar. 1986.
doi:10.1109/TAP.1986.1143830

7. Roy, R. and T. Kailath, "ESPRIT - A subspace rotation approach to estimation of parameters of cisoids in noise," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 34, No. 5, 1340-1342, Oct. 1986.
doi:10.1109/TASSP.1986.1164935

8. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 7, 984-995, Jul. 1989.
doi:10.1109/29.32276

9. Wang, Y. L., H. Chen, Y. N. Peng, and Q. Wan, Spatial Spectrum Estimation, 340-346, Tsinghua University Press, 2004.

10. Griffiths, H. D. and R. Eiges, "Sectoral phase modes from circular antenna arrays," Electronics Letters, Vol. 28, No. 17, 1581-1582, Aug. 1992.
doi:10.1049/el:19921006

11. Zoltowski, M. D. and C. P. Mathews, "Closed-form 2D angle estimation with uniform circular arrays via phase mode excitation and ESPRIT," The 27th Asilomar Conference on Signals, Systems and Computers, 169-173, Los Alamitos, USA, 1993.

12. Swindlehurst, A. L., B. Ottersten, R. Roy, and T. Kailath, "Multiple invariance ESPRIT," IEEE Transactions on Signal Processing, Vol. 40, No. 4, 867-881, Apr. 1992.
doi:10.1109/78.127959

13. Xu, Y. G. and Z. W. Liu, "Closed-form multiple invariance ESPRIT," Multidim Syst. Sign Process, Vol. 18, 47-54, Feb. 2007.
doi:10.1007/s11045-006-0010-z

14. Zhang, X. F., X. Gao, and D. Z. Xu, "Multi-invariance ESPRIT based blind DOA estimation for MC-CDMA with an antenna array," IEEE Transactions on Vehicular Technology, Vol. 58, No. 8, 4686-4690, Oct. 2009.
doi:10.1109/TVT.2009.2020596

15. Tang, X. H. and Q. L. Li, Time Frequency Analysis and Wavelet Transform, 82-118, Science Press, 2016.

16. Amin, M. G., "Spatial time frequency distributions for direction finding and blind source separation," The International Society for Optical Engineering (Proc. SPIE), Vol. 3723, 62-70, Orlando, USA, 1999.

17. Belouchrani, A. and M. G. Amin, "Blind source separation based on time-frequency signal representations," IEEE Transactions on Signal Processing, Vol. 46, No. 11, 2888-2897, Nov. 1998.
doi:10.1109/78.726803

18. Belouchrani, A. and M. G. Amin, "Time frequency MUSIC," IEEE Signal Processing Letters, Vol. 6, No. 5, 109-110, May 1999.
doi:10.1109/97.755429

19. Gershman, A. B. and M. G. Amin, "Wideband direction-of-arrival estimation of multiple chirp signals using spatial time-frequency distributions," IEEE Signal Processing Letters, Vol. 7, No. 6, 152-155, Jun. 2000.
doi:10.1109/97.844636

20. Zhang, Y. M., W. F. Mu, and M. G. Amin, "Subspace analysis of spatial time-frequency distribution matrices," IEEE Transactions on Signal Processing, Vol. 49, No. 4, 747-759, Apr. 2001.
doi:10.1109/78.912919

21. Nguyen, L. T., B. Adel, A. M. Karim, and B. Boualem, "Separating more sources than sensors using time-frequency distributions," EURASIP Journal on Applied Signal Processing, Vol. 17, 2828-2847, Jul. 2005.

22. Abdeldjalil, A. E. B., L. T. Nguyen, A. M. Karim, B. Adel, and G. Yves, "Underdetermined blind separation of nondisjoint sources in the time-frequency domain," IEEE Transactions on Signal Processing, Vol. 55, No. 3, 897-907, Mar. 2007.
doi:10.1109/TSP.2006.888877

23. Zhang, Y. M. and M. G. Amin, "Blind separation of nonstationary sources based on spatial time-frequency distributions," EURASIP Journal on Applied Signal Processing, Vol. 2006, 1-13, Aug. 2006.

24. Zhang, Y. M., M. G. Amin, and B. Himed, "Joint DOD/DOA estimation in MIMO radar exploiting time-frequency signal representations," EURASIP Journal on Advances in Signal Processing, Vol. 102, 1-10, May 2012.
doi:10.1186/1687-6180-2012-1

25. Mohamed, K., B. Adel, and A. M. Karim, "Performance analysis for time-frequency MUSIC algorithm in presence of both additive noise and array calibration errors," EURASIP Journal on Advances in Signal Processing, Vol. 94, 1-11, Apr. 2012.

26. Lin, J. C., X. C. Ma, S. F. Yan, and C. P. Hao, "Time-frequency multi-invariance ESPRIT algorithm for DOA estimation," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 770-773, Aug. 2015.

27. Lin, M. and L. Yang, "Blind calibration and DOA estimation with uniform circular arrays in the presence of mutual coupling," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 315-318, Jul. 2006.

28. Wu, Y. T. and H. C. So, "Simple and accurate two-dimensional angle estimation for a single source with uniform circular array," IEEE Antennas and Wireless Propagation Letters, Vol. 7, No. 1, 78-80, Apr. 2008.

29. Liao, B., Y. T. Wu, and S. C. Chan, "A generalized algorithm for fast two-dimensional angle estimation of a single source with uniform circular arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 11, No. 1, 984-986, Aug. 2012.
doi:10.1109/LAWP.2012.2213792