Vol. 65
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-01-10
A Design of Compact Microwave Six-Port Device for Ultra-Wideband Applications
By
Progress In Electromagnetics Research Letters, Vol. 65, 57-61, 2017
Abstract
A compact fully integrated wideband six-port device composed of a suspended stripline Wilkinson power divider and three bias stripline of 3-dB quadrature directional couplers is presented. In order to integrate the six-port circuit, a multilayer circuit structure has been adopted by the via hole interconnection at the output port of the divider. The 3-dB quadrature directional coupler is composed of two 8.34-dB quadrature directional couplers by series connection. In this way, the six-port circuit structure is simplified and reduced. A multisection impedance match structure has been adopted in the suspended stripline Wilkinson power divider to achieve ultra-wide frequency band. In the experiment, The fully integrated six-port device has obtained good measurement result. It is superior to other present six-port networks in microwave performance with the same dimension.
Citation
Hongyan Li, Jun Zhu, and En Li, "A Design of Compact Microwave Six-Port Device for Ultra-Wideband Applications," Progress In Electromagnetics Research Letters, Vol. 65, 57-61, 2017.
doi:10.2528/PIERL16111303
References

1. Hoer, C. A., "The six-port coupler: A new approach to measuring voltage, current, power, impedance, and phase," IEEE Trans. Instrum. Meas., Vol. 21, No. 4, 466-470, Nov. 1972.
doi:10.1109/TIM.1972.4314068

2. Engen, G. F., "A (historical) review of the six-port measurement technique," IEEE Trans. Microw. Theroy Techn., Vol. 45, No. 12, 2414-2417, Dec. 1997.
doi:10.1109/22.643853

3. Bialkowski, M. E., A. M. Abbosh, and N. Seman, "Compact microwave six-port vector voltmeters for ultra-wideband applications," IEEE Trans. Microw. Theroy Techn., Vol. 55, No. 10, 2216-2223, Otc. 2007.
doi:10.1109/TMTT.2007.906539

4. Bensmida, S., E. Bergeault, G. I. Abib, and B. Huyart, "Power amplifier characterization: An active load-pull system based on six-port reflectometer using complex modulated carrier," IEEE Trans. Microw. Theroy Techn., Vol. 54, No. 6, 2707-2712, Jun. 2006.
doi:10.1109/TMTT.2006.874870

5. Tatu, S. O., E. Moldovan, K. Wu, and R. G. Bosisio, "A new direct millimeter-wave six-port receiver," IEEE Trans. Microw. Theroy Techn., Vol. 49, No. 12, 2571-2522, Dec. 2001.

6. Vinci, G., S. Lindner, F. Barbon, S. Mann, M. Hofmann, A. Duda, R. Weigel, and A. Koelpin, "Six-port radar sensor for remote respiration rate and heartbeat vital-sign monitoring," IEEE Trans. Microw. Theroy Techn., Vol. 61, No. 5, 2093-2100, May 2013.
doi:10.1109/TMTT.2013.2247055

7. Juroshek, J. R. and C. A. Hoer, "A high-power automatic device analyzer for measuring the RF power absorbed by biological samples in a TEM cell ," IEEE Trans. Microw. Theroy Techn., Vol. 32, No. 8, 818-824, Aug. 1984.
doi:10.1109/TMTT.1984.1132777

8. Engen, G. F., "An improved circuit for implementing the six-port technique of microwave measurements," IEEE Trans. Microw. Theroy Techn., Vol. 25, No. 12, 1080-1083, Dec. 1977.
doi:10.1109/TMTT.1977.1129278

9. Gruszczynski, S., K. Wincza, and K. Sachse, "Design of a broadband low-loss coupled-line multisection symmetrical 3-dB directional coupler in suspended stripline technology," Asia-Pacific Microwave Conference, 1228-1231, 2010.

10. Shan, X. and Z. Shen, "A suspended-substrate Ku-band symmetric radial power combiner," IEEE Microwave and Wireless Components Letters, Vol. 21, Issue 12, 652-654, 2011.

11. Yin, X., H. Feng, and J. Xu, "Design of UWB high-pass filter using the suspended stripline," IEEE International Conference on Communication Problem-Solving (ICCP), 377-379, 2015.

12. Song, C., Y. Wang, and X. Wang, "Wide stopband ultra-wideband suspended stripline filter," 16th International Conference on Electronic Packaging Technology (ICEPT), 1402-1405, 2015.
doi:10.1109/ICEPT.2015.7236842

13. Arshad, N. S. A., "Design of six-port network on planar microstrip for angle of arrival detection system," IEEE Asina-Pacific Conference on Applied Electromagnetics, Dec. 8-10, 2014.