Vol. 55
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-03-27
Numerical Simulation of Fragment-Type Antenna by Using Finite Difference Time Domain (FDTD)
By
Progress In Electromagnetics Research M, Vol. 55, 133-142, 2017
Abstract
Finite Difference Time Domain (FDTD) method is widely used in the simulation of various kinds of antennas. In this paper, research on the numerical simulation of the fragment-type antenna by using FDTD is conducted. The fragment-type antenna structures with different cell sizes and different overlapping sizes are simulated and measured. The validity of the numerical simulation of the fragment-type antenna by using FDTD is verified through the comparison between the simulated and measured return losses. In addition, its efficiency in terms of computation time shows great potential in engineering applications, especially when the design matrix is large enough.
Citation
Lixia Yang, Xiao-Dong Ding, Da-Wei Ding, and Jing Xia, "Numerical Simulation of Fragment-Type Antenna by Using Finite Difference Time Domain (FDTD)," Progress In Electromagnetics Research M, Vol. 55, 133-142, 2017.
doi:10.2528/PIERM16111103
References

1. Choo, H. and H. Ling, "Design of broadband and dual-band microstrip antennas on a high-dielectric substrate using a genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 150, No. 3, 137-142, Jun. 2003.

2. Choo, H., A. Hutani, and L. C. Trintinalia, "Shape optimisation of broadband microstrip antennas using genetic algorithm," IET Electronics Letters, Vol. 36, No. 25, 2057-2058, Dec. 2000.
doi:10.1049/el:20001452

3. Alatan, L., M. I. Aksun, and K. Leblebicioglu, "Use of computationally efficient method of moments in the optimization of printed antennas," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 4, 725-732, Apr. 1999.
doi:10.1109/8.768813

4. Pringle, L. N., P. H. Harms, and S. P. Blalock, "A reconfigurable aperture antenna based on switched links between electrically small metallic patches," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1434-1445, Jun. 2004.
doi:10.1109/TAP.2004.825648

5. Soontornpipit, P., C. M. Furse, and C. C. You, "Miniaturized biocompatible microstrip antenna using genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 6, 1939-1945, Jun. 2005.
doi:10.1109/TAP.2005.848461

6. John, M. and M. J. Ammann, "Wideband printed monopole design using a genetic algorithm," IEEE Antennas & Wireless Propagation Letters, Vol. 6, No. 11, 447-449, Sep. 2007.
doi:10.1109/LAWP.2007.891962

7. Ding, D. W. and G. Wang, "MOEA/D-GO for fragmented antenna design," Progress In Electromagnetics Research, Vol. 33, 1-5, Oct. 2013.

8. John, M. and M. J. Ammann, "Design of a wide-band printed antenna using a genetic algorithm on an array of overlapping sub-patches," IEEE International Workshop on Antenna Technology Small Antennas and Novel Metamaterials, 92-95, 2006.
doi:10.1109/IWAT.2006.1608983

9. Herscovici, N., J. Ginn, and T. Donisi, "A fragmented aperture-coupled microstrip antenna," IEEE Antennas and Propagation Society International Symposium, 1-4, San Diego, Jul. 2008.

10. Jin, Z., H. Yang, and X. Tang, "Parameters and schemes selection in the optimization of the fragment-type tag antenna," Third International Joint Conference on Computational Science and Optimization IEEE Computer Society, Vol. 2, 259-262, May 2010.

11. Goojo, K. and Y. C. Chung, "Optimization of UHF RFID tag antennas using a genetic algorithm," IEEE Antennas and Propagation Society International Symposium, 2087-2090, Jul. 9-14, 2006.

12. Jin, Z., H. Yang, X. Tang, and J. Mao, "Impedance analysis of the fragment-type tag antenna using FDTD," International Symposium on Antennas, IEEE Transactions on Antennas and Propagation, 260-262, Nov. 2008.

13. Cummer, S. A., "A simple, nearly perfectly matched layer for general electromagnetic media," IEEE Microwave & Wireless Components Letters, Vol. 13, No. 3, 128-130, Apr. 2003.
doi:10.1109/LMWC.2003.810124

14. Johnson, J. M. and Y. Rahmat-Samii, "Genetic algorithms and method of moments (GA/MOM) for the design of integrated antennas," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 10, 1606-1614, Oct. 1999.
doi:10.1109/8.805906

15. Sheen, D. M., S. M. Ali, and M. D. Abouzahra, "Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits," IEEE Transactions on Microwave Theory & Techniques, Vol. 8, No. 7, 849-857, Jun. 1990.
doi:10.1109/22.55775

16. Merulla, E. J. and R. Bansal, "Optimized design and fabrication of a fragmented wire antenna," IEEE Sarnoff Symposium, 1-4, Sarnoff, Apr. 28-30, 2008.