1. Yeh, C. and F. I. Shimabukuro, The Essence of Dielectric Waveguides, 522, Springer Science+Business Media, LLC, 2008.
doi:10.1007/978-0-387-49799-0
2. Chen, X., G. Liu, and C. Tang, "Novel dielectric photonic-band-gap resonant cavity loaded in a gyrotron," J. Phys. D: Appl. Phys., Vol. 43, No. 40, 405101, 2010.
doi:10.1088/0022-3727/43/40/405103
3. Huang, Y. J., K. R. Chu, and M. Thumm, "Self-consistent modeling of terahertz waveguide, and cavity with frequency-dependent conductivity," Physics of Plasmas, Vol. 22, No. 1, 013108, 2015.
doi:10.1063/1.4905627
4. Hong, B. B., L. P. Huang, X. L. Xu, Y. X. Xia, and C. J. Tang, "Hollow core photonic crystal for terahertz gyrotron oscillator," J. Phys. D: Appl. Phys., Vol. 48, No. 4, 045104, 2015.
doi:10.1088/0022-3727/48/4/045104
5. Choe, J. Y., H. S Uhm, and S. Ahn, "Analysis of the wide band gyrotron amplifier in a dielectric loaded waveguide," Journal of Applied Physics, Vol. 52, No. 7, 4508-4516, 1981.
doi:10.1063/1.329378
6. Uhm, H. S., J. Y. Choe, and S. Ahn, "Theory of gyrotron amplifier in a waveguide with inner dielectric material," Int. J. Electron., Vol. 51, No. 4, 521-532, 1981.
doi:10.1080/00207218108901354
7. Rao, S. J., P. K. Jain, and B. N. Basu, "Broadbanding of a gyro-TWT by dielectric-loading through dispersion shaping," IEEE Trans. Electron Devices, Vol. 43, No. 12, 2290-2299, 1996.
doi:10.1109/16.544423
8. Leou, K. C., D. B. McDermott, and N. C. Luhmann, "Large-signal characteristics of a wide-band dielectric-loaded gyro-TWT amplifier," IEEE Trans. Plasma Sci., Vol. 24, No. 3, 718-726, 1996.
doi:10.1109/27.533073
9. Rao, S. J., R. Jain, and B. N. Basu, "Two-stage dielectric-loading for broadbanding a gyro-TWT," IEEE Electron Device Letters, Vol. 17, No. 6, 303-305, 1996.
doi:10.1109/55.496465
10. Du, C.-H., Q. Z. Xue, and P.-K. Liu, "Loss-induced modal transition in a dielectric-coated metal cylindrical waveguide for gyro-traveling-wave-tube applications," IEEE Electron Device Letters, Vol. 29, No. 11, 1256-1258, 2008.
doi:10.1109/LED.2008.2004635
11. Du, C.-H. and P.-K. Liu, "Linear full-wave-interaction analysis of a gyrotron-traveling-wave-tube amplifier based on a lossy dielectric-lined circuit," IEEE Trans. Plasma Sci., Vol. 38, No. 6, 1219-1226, 2010.
doi:10.1109/TPS.2010.2042622
12. Du, C.-H. and P.-K. Liu, "Nonlinear full-wave-interaction analysis of a gyrotron-traveling-wave-tube amplifier based on a lossy dielectric-lined circuit," Physics of Plasmas, Vol. 17, No. 3, 033104, 2010.
doi:10.1063/1.3339935
13. Du, C. H., et al. "Design of a W-band gyro-TWT amplifier with a lossy ceramic-loaded circuit," IEEE Trans. Electron Devices, Vol. 60, No. 7, 2388-2394, 2013.
doi:10.1109/TED.2013.2264100
14. Yin, Y.-Z., "The cyclotron autoresonance maser with a large-orbit electron ring in a dielectric-loaded waveguide," Int. J. Infrared Millimeter Waves, Vol. 14, No. 8, 1587-1600, 1993.
doi:10.1007/BF02096218
15. Chu, K. R., A. K. Ganguly, V. L. Granatstein, J. L. Hirshfield, S. Y. Park, and J. M. Baird, "Theory of a slow wave cyclotron amplifier," Int. J. Electron., Vol. 51, No. 4, 493-502, 1981.
doi:10.1080/00207218108901352
16. Lin, A. T., W. W. Chang, and K. R. Chu, "Nonlinear efficiency and bandwidth of a slow wave cyclotron amplifier," Int. J. Infrared Millimeter Waves, Vol. 5, No. 4, 427-444, 1984.
doi:10.1007/BF01010142
17. Freund, H. P. and A. K. Ganguly, "Nonlinear analysis of the Cerenkov maser," Physics of Fluids B, Vol. 2, No. 10, 2506-2515, 1990.
doi:10.1063/1.859515
18. Ganguly, A. K. and S. Ahn, "Nonlinear theory of the slow-wave cyclotron amplifier," Phys. Rev. A, Vol. 42, No. 6, 3544-3554, 1990.
doi:10.1103/PhysRevA.42.3544
19. Vomvoridis, J. L. and M. A. Hambakis, "Non-linear analysis of the electron cyclotron maser with axial initial electron velocity," Int. J. Electron., Vol. 71, No. 1, 167-190, 1991.
doi:10.1080/00207219108925467
20. Iatrou, C. T. and J. L. Vomvoridis, "Microwave excitation and amplification using cyclotron interaction with an axial electron velocity beam," Int. J. Electron., Vol. 71, No. 3, 493-510, 1991.
doi:10.1080/00207219108925495
21. Vomvoridis, J. L. and C. T. Iatrou, "Linear fluid analysis of the electron cyclotron maser with axial initial electron velocity," Int. J. Electron., Vol. 71, No. 1, 145-165, 1991.
doi:10.1080/00207219108925466
22. Cho, Y.-H., D.-I. Choi, and J.-S. Choi, "Electromagnetic wave amplification of cyclotron Cherenkov maser," Optics Communications, Vol. 94, No. 6, 530-536, 1992.
doi:10.1016/0030-4018(92)90600-V
23. Cho, Y.-H., D.-I. Choi, and J.-S. Choi, "Cyclotron Cherenkov maser amplification using the anomalous Doppler effect," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 331, No. 1, 572-576, 1993.
doi:10.1016/0168-9002(93)90112-U
24. Lee, C.-Y., R. Yamashita, and M. Masuzaki, "Linear analysis of cyclotron-cherenkov and cherenkov instabilities in dielectric-loaded coaxial waveguides," Int. J. Infrared Millimeter Waves, Vol. 18, No. 2, 519-535, 1997.
doi:10.1007/BF02677937
25. Zhao, D. and Y. Ding, "Cerenkov and cyclotron Cerenkov instabilities in a dielectric loaded parallel plate waveguide sheet electron beam system," Physics of Plasmas, Vol. 18, No. 9, 093107, 2011.
doi:10.1063/1.3632973
26. Zhao, D. and Y. Ding, "Nonlinear analysis of the dielectric loaded rectangular Cerenkov maser," Physics of Plasmas, Vol. 19, No. 2, 024508, 2012.
doi:10.1063/1.3684241
27. Zhao, D. and Y. Ding, "Simplified nonlinear theory of the dielectric loaded rectangular Cerenkov maser," Chin. Phys. B, Vol. 21, No. 9, 094102, 2012.
doi:10.1088/1674-1056/21/9/094102
28. Kong, L.-B., H.-Y. Wang, Z.-L. Hou, H.-B. Jin, and C.-H. Du, "The nonlinear theory of slow-wave electron cyclotron masers with inclusion of the beam velocity spread," Annals of Physics, Vol. 339, 588-595, 2013.
doi:10.1016/j.aop.2013.05.008
29. Khalilzadeh, E., A. Chakhmachi, and B. Maraghechi, "Effect of self-fields on the electron cyclotron maser instability in a dielectric loaded waveguide," The European Physical Journal D, Vol. 69, No. 11, 256, 2015.
doi:10.1140/epjd/e2015-60254-9
30. Shcherbinin, V. I., G. I. Zaginaylov, and V. I. Tkachenko, "HE and EH hybrid waves in a circular dielectric waveguide with an anisotropic impedance surface," Problems of Atomic Science and Technology. Plasma Electronics and New Methods of Acceleration, Vol. 98, 89-93, 2015.
31. Mohsen, A. and M. Hamid, "Wave propagation in a circular waveguide with an absorbing wall," Journal of Applied Physics, Vol. 41, No. 1, 433-434, 1970.
doi:10.1063/1.1658369
32. Elsherbeni, A. Z., J. Stanier, and M. Hamid, "Eigenvalues of propagating waves in a circular waveguide with an impedance wall," IEE Proceedings H, Vol. 135, No. 1, 23-26, 1988.
33. Koivisto, P. K., S. A. Tretyakov, and M. I. Oksanen, "Waveguides filled with general biisotropic media," Radio Science, Vol. 28, No. 5, 675-686, 1993.
doi:10.1029/93RS00361
34. Mahmoud, S. F., Electromagnetic Waveguides: Theory and Applications, 77-93, Peregrinus, 1991.
doi:10.1049/PBEW032E
35. Zhang, Q., T. Jiang, and Y. Feng, "Slow-light propagation in a cylindrical dielectric waveguide with metamaterial cladding," J. Phys. D: Appl. Phys., Vol. 44, No. 47, 475103, 2011.
doi:10.1088/0022-3727/44/47/475103
36. Atakaramians, S., A. Argyros, S. Fleming, and B. Kuhlmey, "Hollow-core waveguides with uniaxial metamaterial cladding: Modal equations and guidance conditions," J. Opt. Soc. Am. B, Vol. 29, No. 9, 2462-2477, 2012.
doi:10.1364/JOSAB.29.002462
37. Pollock, J. G. and A. K. Iyer, "Experimental verification of below-cutoff propagation in miniaturized circular waveguides using anisotropic ENNZ metamaterial liners," IEEE Trans. Microwave Theory Tech., Vol. 64, No. 4, 1297-1305, 2016.
doi:10.1109/TMTT.2016.2532872
38. Olver, P., Introduction to Partial Differential Equations, 123, Springer-Verlag, 2014.
doi:10.1007/978-3-319-02099-0
39. Miyagi, M. and S. Kawakami, "Design theory of dielectric-coated circular metallic waveguides for infrared transmission," Journal of Lightwave Technology, Vol. 2, No. 2, 116-126, 1984.
doi:10.1109/JLT.1984.1073590
40. Dragone, C., "Reflection, transmission and mode conversion in a corrugated feed," The Bell System Technical Journal, Vol. 56, No. 6, 835-867, 1977.
doi:10.1002/j.1538-7305.1977.tb00544.x
41. Li, H. and M. Thumm, "Mode coupling in corrugated waveguides with varying wall impedance and diameter change," Int. J. Electron., Vol. 71, No. 5, 827-844, 1991.
doi:10.1080/00207219108925527
42. Li, H., F. Xu, and S. Liu, "Theory of harmonic gyrotron with multiconductors structure," Int. J. Electron., Vol. 65, No. 3, 409-418, 1988.
doi:10.1080/00207218808945241
43. Iatrou, C. T., S. Kern, and A. B. Pavelyev, "Coaxial cavities with corrugated inner conductor for gyrotrons," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 1, 56-64, 1996.
doi:10.1109/22.481385
44. Shcherbinin, V. I., "Eigenmodes of a gyrotron cavity with anisotropic impedance surface," Proc. of 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, 1-4, Kharkiv, Ukraine, June 20-24, 2016.
45. Dumbrajs, O. and G. S. Nusinovich, "Coaxial gyrotrons: Past, present and future (review)," IEEE Trans. Plasma Sci., Vol. 32, No. 3, 934-946, 2004.
doi:10.1109/TPS.2004.829976
46. Yeh, C. and G. Lindgren, "Computing the propagation characteristics of radially stratified fibers: An efficient method," Appl. Opt., Vol. 16, No. 2, 483-493, 1977.
doi:10.1364/AO.16.000483
47. Chou, R. C. and S. W. Lee, "Modal attenuation in multilayered coated waveguides," IEEE Trans. Microwave Theory Tech., Vol. 36, No. 7, 1167-1176, 1988.
doi:10.1109/22.3652