Vol. 65
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-01-20
Gain Enhancement and Wideband RCS Reduction of a Microstrip Antenna Using Triple-Band Planar Electromagnetic Band-Gap Structure
By
Progress In Electromagnetics Research Letters, Vol. 65, 103-108, 2017
Abstract
A triple-band planar electromagnetic band-gap (EBG) structure used for gain enhancement and wideband radar cross section reduction (RCSR) of antenna is presented in this paper. Three band-gaps of an EBG structure are realized by introducing two pla-nar spiral inductances on a planar EBG structure. An equivalent model of EBG is given to further understand the formation of three band-gaps. The proposed EBG is placed around antenna units and arrays to calculate the affection of the RCS and the gain. Due to the band-gaps of the EBG structure, RCS of antennas is reduced, and the gain of antennas is enhanced. Results show that the RCS is reduced as much as 20 dB from 9 GHz to 21 GHz, and both of bandwidth and gain of antennas can be slightly enhanced. Two antenna units operating at 8.6 GHz are fabricated and measured to verify the correctness of simulation. Measured and simulated results are in good agreement.
Citation
Yang Li, Kunzhe Zhang, Lin-an Yang, and Lin Du, "Gain Enhancement and Wideband RCS Reduction of a Microstrip Antenna Using Triple-Band Planar Electromagnetic Band-Gap Structure," Progress In Electromagnetics Research Letters, Vol. 65, 103-108, 2017.
doi:10.2528/PIERL16110802
References

1. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, SciTech, Raleigh, 2004.
doi:10.1049/sbra026e

2. Lv, J., S.-X. Gong, and F.-W. Wang, "RCS reduction of Quasi-Yagi antenna," Progress In Electromagnetics Research C, Vol. 53, 89-97, 2014.
doi:10.2528/PIERC14052905

3. Ramkumar, M. A., C. Sudhendra, and K. Rao, "A novel low RCS microstrip antenna array using thin and wideband radar absorbing structure based on embedded passives resistors," Progress In Electromagnetics Research C, Vol. 68, 153-161, 2016.
doi:10.2528/PIERC16080506

4. Li, Y. and Y. Liu, "Microstrip antenna using ground-cut slots for low RCS with size miniaturization techniques," Progress In Electromagnetics Research Letter, Vol. 1, 211-220, 2008.
doi:10.2528/PIERC08021604

5. Jiang, W., "Low RCS microstrip antenna array with incident wave in grazing angle," Progress In Electromagnetics Research C, Vol. 55, 73-82, 2014.
doi:10.2528/PIERC14090802

6. Jia, Y., Y. Liu, and S. X. Gong, "Printed UWB end-fire Vivaldi antenna with low RCS," Progress In Electromagnetics Research Letters, Vol. 37, 11-20, 2013.
doi:10.2528/PIERL12112011

7. Zheng, J., S.-J. Fang, and Y. Jia, "RCS reduction of patch array antenna by complementary splitring resonators structure," Progress In Electromagnetics Research C, Vol. 51, 95-101, 2014.
doi:10.2528/PIERC14050503

8. Liu, T., et al. "RCS reduction of waveguide slot antenna with metamaterial absorber," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 479-484, 2013.

9. Volakis, J. L., et al. "Broadband RCS reduction of rectangular patch by using distributed loading," Electron. Lett., Vol. 28, No. 25, 2322-2323, 1992.
doi:10.1049/el:19921494

10. Zhang, J., et al. "RCS reduction of patch array antenna by electromagnetic band-gap structure," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1048-1501, 2012.
doi:10.1109/LAWP.2012.2215832

11. Li, Y. Q., et al. "RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material," IEEE Antennas Wireless Propag. Lett., Vol. 7, 473-476, 2008.

12. Xu, W. W., "A novel microstrip antenna with composite patch structure for reduction of in-band RCS," IEEE Antennas Wireless Propag. Lett., Vol. 14, 139-142, 2015.
doi:10.1109/LAWP.2014.2357017

13. Soliman, et al., "Optimized design of a low-RCS patch antenna using a frequency selective surface," Antennas Propagation Society International Symposium, 329-332, 2012.

14. Liu, Y., et al. "Low RCS microstrip patch antenna using frequency selective surface and microstrip resonator," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1290-1293, 2015.
doi:10.1109/LAWP.2015.2402292

15. Liu, Y., et al. "RCS reduction of patch array antenna based on microstrip resonator," IEEE Antennas Wireless Propag. Lett., Vol. 14, 4-7, 2015.
doi:10.1109/LAWP.2014.2354341

16. Zahir Joozdani, M., et al. "Wideband radar cross-section reduction of patch array antenna with miniaturized hexagonal loop frequency selective surface," Electron. Lett., Vol. 52, No. 9, 767-768, 2016.
doi:10.1049/el.2016.0336