Vol. 53
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-01-14
Enhanced Three-Dimensional Imaging for Multi-Circular Synthetic Aperture Radar
By
Progress In Electromagnetics Research M, Vol. 53, 77-87, 2017
Abstract
In multi-circular synthetic aperture radar (MCSAR) mode, resolution and sidelobes are two important parameters to consider when representing imaging quality, as in other SAR imaging modes. In this paper, three-dimensional (3-D) resolution and cone-shaped sidelobes of MCSAR are analyzed for a point target in the scene center under the Nyquist sampling criterion. The results of the analysis show that resolution can be improved, and cone-shaped sidelobes can be suppressed by increasing the system bandwidth and the length of synthetic aperture in the elevation direction. But this will make the system of acquiring data more difficult. It turns out that some digital signal processing techniques can enhance 3-D imaging quality of MCSAR. In this paper, a simple method based on spectrum extrapolation and interferometric phase masking is proposed to improve 3-D resolution and suppress cone-shaped sidelobes of MCSAR. Experimental results regarding a tank model in a microwave anechoic chamber demonstrate that this method is effective.
Citation
Lingjuan Yu, Yun Lin, Qian Bao, Wenjie Shen, Yue Zhao, and Wen Hong, "Enhanced Three-Dimensional Imaging for Multi-Circular Synthetic Aperture Radar," Progress In Electromagnetics Research M, Vol. 53, 77-87, 2017.
doi:10.2528/PIERM16110305
References

1. Ponce, O., P. Prats, M. Pinheiro, M. Rodriguez-Cassola, R. Scheiber, A. Reigber, and A. Moreira, "Fully polarimetric high-Resolution 3-D imaging with circular SAR at L-band," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 6, 3074-3090, Mar. 2014.
doi:10.1109/TGRS.2013.2269194

2. Soumekh, M., Synthetic Aperture Radar Signal Processing with Matlab Algorithms, 486-545, Wiley, 1999.

3. Ishimaru, A., T. Chan, and Y. Kuga, "An imaging technique using confocal circular synthetic aperture radar," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 5, 1524-1530, Sep. 1998.
doi:10.1109/36.718856

4. Ponce, O., P. Prats, R. Scheiber, A. Reigber, and A. Moreira, "Analysis and optimization of multi-circular SAR for fully polarimetric holographic tomography over forested areas," Proc. IEEE Geosci. Remote Sens. Symp., 2365-2368, 2013.

5. Austin, C. D., E. Ertin, and R. L. Moses, "Sparse multipass 3D SAR imaging: Applications to the GOTCHA data set," Proc. SPIE Algorithms for Synthetic Aperture Rdar Imagery XVI, Vol. 7337, 1-12, 2009.

6. Bryant, M. L., L. L. Gostin, and M. Soumekh, "3-D E-CSAR imaging of a T-72 tank and synthesis of its SAR reconstructions," IEEE Trans. Aerospace and Electronic Systems, Vol. 39, No. 1, 211-227, 2003.
doi:10.1109/TAES.2003.1188905

7. Ponce, O., P. Prats, R. Scheiber, A. Reigber, and A. Moreira, "First airborne demonstration of holographic SAR tomography with fully polarimetric multicircular acquisitions at L-band," IEEE Trans. Geosci. Remote Sens., Vol. 54, No. 10, 6170-6196, 2016.
doi:10.1109/TGRS.2016.2582959

8. Ertin, E., R. L. Moses, and L. C. Potter, "Interferometric methods for three-dimensional target reconstruction with multipass circular SAR," IET Radar, Sonar & Navigation, Vol. 4, No. 3, 464-473, Jul. 2010.
doi:10.1049/iet-rsn.2009.0048

9. Austin, C. D., E. Ertin, and R. L. Moses, "Sparse signal methods for 3-D radar imaging," IEEE Journal of Selected Topics in Signal Processing, Vol. 5, No. 3, 408-423, 2011.
doi:10.1109/JSTSP.2010.2090128

10. Ferrara, M., J. A. Jackson, and C. D. Austin, "Enhancement of multi-pass 3D circular SAR images using sparse reconstruction techniques," Proc. SPIE. Algorithms for Synthetic Aperture Rdar Imagery XVI, Vol. 7337, 2009.

11. Yu, L. and Y. Zhang, "CSAR imaging with data extrapolation and approximate GLRT techniques," Progress In Electromagnetics Research M, Vol. 19, 209-220, 2011.
doi:10.2528/PIERM11062904

12. Lin, Y., W. Hong, W. X. Tan, and Y. R. Wu, "Interferometric circular SAR method for three-dimensional imaging," IEEE Geosci. Remote Sens. Lett., Vol. 8, No. 6, 1026-1030, 2011.
doi:10.1109/LGRS.2011.2150732

13. Gupta, I. J., M. J. Beals, and A. Moghaddar, "Data extrapolation for high resolution radar imaging," IEEE Trans. Antennas and Propagation, Vol. 42, No. 11, 1540-1545, 1994.
doi:10.1109/8.362783

14. Kayran, A. H. and I. Erer, "Optimum asymmetric half-plane autoregressive lattice parameter modeling of 2-D fields," IEEE Trans. Signal Processing, Vol. 52, No. 3, 807-819, 2004.
doi:10.1109/TSP.2003.822363