Vol. 64
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-12-16
High Selectivity Wideband Bandpass Filter Based on Transversal Signal-Interaction Concepts Loaded with Open and Shorted Stubs
By
Progress In Electromagnetics Research Letters, Vol. 64, 133-139, 2016
Abstract
A new design of high selectivity wideband bandpass filter based on transversal signal-interaction concepts loaded with open and shorted stubs is proposed in this paper. Two transmission paths are used to realize signal transmission. Path 1 is composed of a T-shaped structure with shorted stub, and Path 2 consists of two open coupled lines loaded with open stubs. A wide five-order passband and high selectivity stopband with four transmission zeros can be achieved in the proposed filter. Finally, a wideband bandpass filter operating at 3 GHz with 3-dB fractional bandwidth of 83.3% (1.55 to 4.05 GHz) is designed, fabricated, and measured. Good agreement between the simulation and experiment is obtained.
Citation
Liwei Cui, Weimin Wang, Zheng Zhuang, Shulan Li, Yongle Wu, and Yuan'an Liu, "High Selectivity Wideband Bandpass Filter Based on Transversal Signal-Interaction Concepts Loaded with Open and Shorted Stubs," Progress In Electromagnetics Research Letters, Vol. 64, 133-139, 2016.
doi:10.2528/PIERL16101502
References

1. Feng, W. J. and W. Q. Che, "Novel ultra-wideband bandpass filter using shorted coupled lines and transversal transmission line," IEEE Microwave Wireless Compon. Lett., Vol. 20, 548-551, 2010.
doi:10.1109/LMWC.2010.2055840

2. Sanchez-Soriano, M. A., E. Bronchalo, and G. Torregrosa-Penalva, "Compact UWB bandpass filter based on signal interference techniques," IEEE Microw. Wireless Compon. Lett., Vol. 19, 692-694, 2009.
doi:10.1109/LMWC.2009.2032001

3. Feng, W. J., W. Q. Che, S. Y. Shi, and Q. Xue, "Compact dual-wideband bandstop filters based on open coupled lines and transversal signal-interaction concepts," IET Microwave Antennas Propagat., Vol. 7, 92-97, 2013.
doi:10.1049/iet-map.2012.0555

4. Gomez-Garcıa, R., M. Sanchez-Renedo, and B. Jarry, "A class of microwave transversal signal-interference dual-passband planar filters," Microwave Wireless Compon. Lett., Vol. 19, 158-160, 2009.
doi:10.1109/LMWC.2009.2013738

5. Xue, S. J., W. J. Feng, H. T. Zhu, and W. Q. Che, "Wideband bandpass filter with six transmission zeros using transversal signal-interaction concepts," Progress In Electromagnetics Research C, Vol. 34, 1-12, 2013.
doi:10.2528/PIERC12092814

6. Feng, W. J., W. Q. Che, Y. M. Chang, S. Y. Shi, and Q. Xue, "High selectivity fifth-order wideband bandpass filter with multiple transmission zeros based on transversal signal-interaction concepts," IEEE Trans. Microwave Theory Tech., Vol. 61, 89-97, 2013.
doi:10.1109/TMTT.2012.2227785

7. Feng, W. J. and W. Q. Che, "Novel wideband differential bandpass filter based on T-shaped structure," IEEE Trans. Microwave Theory Tech., Vol. 60, 1560-1568, 2012.
doi:10.1109/TMTT.2012.2188538

8. Nan, L. X., Y. L Wu, W. M. Wang, S. L. Li, and Y. A. Liu, "A compact wideband bandpass filter using a coupled-line quad-mode resonator," Progress In Electromagnetics Research Letters, Vol. 5, 7-12, 2015.
doi:10.2528/PIERL15020201

9. Feng, W. J., W. Q. Che, S. Y. Shi, and Q. Xue, "High selectivity wideband bandpass filter based on transversal signal-interaction concepts and T-shaped structure," IEEE Microw. Wireless Compon. Lett., Vol. 22, 562-564, 2012.
doi:10.1109/LMWC.2012.2224651

10. Wu, Y. L., S. Y. Zhou, W. W. Zhang, M. L. Liao, and Y. N. Liu, "Coupled-line dual-band bandpass filter with compact structure and wide stopband," Electron. Lett., Vol. 50, 187-189, 2014.
doi:10.1049/el.2013.3791

11. Bozzetti, M., A. D’orazio, M. De Sario, V. Petruzzelli, F. Prudenzano, and F. Rrnna, "Tapered photonic bandgap microstrip lowpass filters: Design and realization," IEEE Proceedings Microwaves, Antennas and Propagation, Vol. 150, 459-462, 2003.
doi:10.1049/ip-map:20030542

12. Ahn, D., J.-S. Park, C.-S. Kim, and J. Kim, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Trans. Microwave Theory Techn., Vol. 49, 86-93, 2001.
doi:10.1109/22.899965

13. Matthaei, G., L. Young, and E. M. T. Jones, Microwave Filter, Impedance Matching Networks and Coupling Structures, Sec. 5, 222-224, Artech House, Norwood, MA, USA, 1985.

14. Tang, C. W., C. T. Tseng, and S. C. Chang, "A tunable bandpass filter with modified parallel-coupled A tunable bandpass filter with modified parallelcoupled," IEEE Microw. Wireless Compon. Lett., Vol. 23, 190-192, 2013.
doi:10.1109/LMWC.2013.2247585

15. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, 2001.
doi:10.1002/0471221619

16. Jones, E. M. T. and J. T. Bolljahn, "Coupled-strip-transmission-line filters and directional couplers," IRE Trans. Microwave Theory Techn., Vol. 4, 75-81, 1956.
doi:10.1109/TMTT.1956.1125022