Vol. 53
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-01-13
Target Classification from JEM Signal Using Frequency Masking
By
Progress In Electromagnetics Research M, Vol. 53, 67-75, 2017
Abstract
This paper deals with a technique for classifying jet aircrafts from JEM (Jet Engine Modulation) signal. A novel method to recognize an engine model by analyzing JEM spectrum using frequency mask is proposed. The frequency mask extracts and analyses the spectral component at the frequencies that are predicted from the blade number of a jet engine and the estimated spool rate. The proposed method does not need a complicated logical algorithm for finding the chopping frequency or the pre-simulated engine spectra used in previous methods. In addition, we suggest a method to precisely estimate the spool rate in the spectrum domain of JEM signal, which plays an important role in generating the frequency mask. The classification experiments using the JEM signals measured from two fabricated engine models verify that the proposed algorithm has good performance in the recognition of jet aircrafts.
Citation
Si-Ho Kim, Chan Hong Kim, Dae-Young Chae, and Sang In Lee, "Target Classification from JEM Signal Using Frequency Masking," Progress In Electromagnetics Research M, Vol. 53, 67-75, 2017.
doi:10.2528/PIERM16100602
References

1. Skolnik, M. I., Introduction to Radar Systems, 3rd Ed., McGraw-Hill, 2001.

2. Tait, P., Introduction to Radar Target Recognition, IEE, 2005.
doi:10.1049/PBRA018E

3. Yang, W. Y., J. H. Park, W. Y. Song, and N. H. Myung, "Robust and fast algorithm for estimating fundamental periodicity of jet engine modulation signals," IET Radar, Sonar & Navigation, Vol. 10, No. 7, 1286-1294, 2016.
doi:10.1049/iet-rsn.2015.0526

4. Yang, W. Y., J. H. Park, J. W. Bae, S. C. Kang, and N. H. Myung, "Automatic feature extraction from jet engine modulation signals based on an image processing method," IET Radar, Sonar & Navigation, Vol. 9, No. 7, 783-789, 2015.
doi:10.1049/iet-rsn.2014.0281

5. Park, J. H., W. Y. Yang, J. W. Bae, S. C. Kang, and N. H. Myung, "Extended high resolution range profile-jet engine modulation analysis with signal eccentricity," Progress In Electromagnetics Research, Vol. 142, 505-521, 2013.
doi:10.2528/PIER13080102

6. Chadwick, J. and G. L. Williams, "Air target identification --- Concept to reality," IET International Conference on Radar Systems, 1-5, 2007.

7. Bell, M. R. and R. A. Grubbs, "JEM modeling and measurement for radar target identification," IEEE Transactions on Aerospace and Electronic Systems, Vol. 29, No. 1, 73-87, 1993.
doi:10.1109/7.249114

8. Martin, J. and B. Mulgrew, "Analysis of the theoretical radar return signal from aircraft propeller blades," IEEE International Radar Conference, 569-572, 1990.
doi:10.1109/RADAR.1990.201091

9. Martin, J. and B. Mulgrew, "Analysis of the effect of blade pitch on the return signal from rotating aircraft blades," IEE Radar 92 International Conference, 446-449, Brighton, UK, 1992.

10. Tong, C., Z. Huang, P. Yan, et al. "Studies of modulation mechanism of jet engine modulation effect," IEEE Microwave Conference Proceedings, APMC 2005 Proceedings, Vol. 3, 2005.

11. Cuomo, S., P. F. Pellegrini, and E. Piazza, "Model validation for jet engine modulation phenomenon," Electronics Letters, Vol. 30, No. 24, 2073-2074, 1994.
doi:10.1049/el:19941369

12. French, A., Target recognition techniques for multifunction phased array radar, Thesis for the degree of Doctor of Philosophy of the University College London, 2010.

13. Oppenheim, A. V. and R. W. Schafer, Discrete-time Signal Processing, Prentice-Hall, 1989.

14. Lim, H., G. H. Yoo, C. H. Kim, K. I. Kwon, and N. H.Myung, "Radar cross section measurements of a realistic jet engine structure with rotating parts," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 7, 999-1008, 2011.
doi:10.1163/156939311795253993