Vol. 63
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-11-09
Compact UWB Filter with High Selectivity and a Deep Notched Band
By
Progress In Electromagnetics Research Letters, Vol. 63, 123-128, 2016
Abstract
A compact ultra-wideband (UWB) bandpass filter with high selectivity and deep notched band attenuation is presented in this letter. The main structure of this filter is a balun-based coplanar waveguide (CPW)-microstrip-CPW transition. This structure has UWB bandpass characteristic (2.85-11 GHz) and a transmission zero at its lower transition band. To achieve a transmission zero at its upper transition band, some complementary split ring resonators (CSRR) are added in the ground of microstrip. Therefore, this filter, whose skirt factor is 89%, presents high selectivity. Then, a notched band is created by short-ended stubs for 5.5 GHz WLAN. Owing to the stepped impedance characteristic of these stubs, this filter achieves -41 dB deep notch in its S21. Besides, the size of the whole filter is only 0.38λg*0.45λg. The simulated and measured results agree well with each other.
Citation
Haodong Lin, Xinlin Xia, Zhenyu Guo, and Tao Yang, "Compact UWB Filter with High Selectivity and a Deep Notched Band," Progress In Electromagnetics Research Letters, Vol. 63, 123-128, 2016.
doi:10.2528/PIERL16092802
References

1. Sarkar, P., I. Rakshit, S. Adhikari, M. Pal, and R. Ghatak, "A band notch UWB bandpass filter using dual-stub-loaded multimode resonator with embedded spiral resonator," Int. J. Microw. Wireless Technol., Vol. 6, No. 2, 161-166, 2013.
doi:10.1017/S1759078713000998

2. Wang, K., S. W. Wong, and Q. X. Chu, "A compact UWB CPW bandpass filter with short-ended H-shaped resonator and controllable notched band," Microwave and Optical Technology Letters, Vol. 55, No. 7, 1577-1581, 2013.
doi:10.1002/mop.27663

3. Zhu, H. and Q. X. Chu, "Ultra-wideband bandpass filter with a notch-band using stub-loaded ring resonator," IEEE Microw. Wirel. Compon. Lett, Vol. 23, No. 7, 341-343, 2013.
doi:10.1109/LMWC.2013.2262928

4. Karimi, G., F. K. Hamedani, and H. Siahkamari, "Compact UWB BPF using slotted resonator with an independently controllable notched band," Int. J. Microw. Wireless Technol., Vol. 8, No. 1, 25-31, 2016.
doi:10.1017/S1759078714001251

5. Mirzaee, M., B. S. Virdee, and S. Noghanian, "Compact ultra-wideband bandpass filter with variable notch characteristics based on transversal signal-interaction concepts," International Journal of Rf and Microwave Computer-Aided Engineering, Vol. 24, No. 5, 549-559, 2014.
doi:10.1002/mmce.20798

6. Chen, X., L. Zhang, and Y. Peng, "UWB bandpass filter with sharp rejection and narrow notched band," Electron. Lett., Vol. 50, No. 15, 1077-1079, 2014.
doi:10.1049/el.2014.1420

7. Xu, J., W. Wu, W. Kang, and C. Miao, "Compact UWB bandpass filter with a notched band using radial stub loaded resonator," IEEE Microw. Wirel. Compon. Lett., Vol. 22, No. 7, 351-353, 2012.
doi:10.1109/LMWC.2012.2201930

8. Wang, H., K. W. Tam, S. K. Ho, W. Kang, and W. Wu, "Design of ultra-wideband bandpass filters with fixed and reconfigurable notch bands using terminated cross-shaped resonators," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 2, 252-265, 2014.
doi:10.1109/TMTT.2013.2296530

9. Li, J., C. Ding, F. Wei, and X. W. Shi, "Compact UWB BPF with notch band based on SW-HMSIW," Electron. Lett., Vol. 51, No. 17, 1338-1339, 2015.
doi:10.1049/el.2015.0449

10. Cui, C., Z. Hou, H. Wang, and W. Wu, "Novel band-notched UWB bandpass filter using microstrip/slotline ring resonators," Progress In Electromagnetics Research Letters, Vol. 45, 69-73, 2014.
doi:10.2528/PIERL14020801

11. Baik, J. W., T. H. Lee, and Y. S. Kim, "UWB bandpass filter using microstrip-to-CPW transition with broadband balun," IEEE Microw. Wirel. Compon. Lett., Vol. 17, No. 12, 846-848, 2007.
doi:10.1109/LMWC.2007.910480

12. Baik, J. W., T. H. Lee, and Y. S. Kim, "Novel broadband microstrip-to-CPW transition with easy transmission band control," IEICE Electronics Express, Vol. 5, No. 2, 48-52, 2008.
doi:10.1587/elex.5.48

13. Luo, X., H. Qian, J. G. Ma, and E. P. Li, "Wideband bandpass filter with excellent selectivity using new CSRR-based resonator," Electron. Lett., Vol. 46, No. 20, 1390-1391, 2010.
doi:10.1049/el.2010.1817