Vol. 64
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-12-05
Planar Wideband Balun with Novel Slotline T-Junction Transition
By
Progress In Electromagnetics Research Letters, Vol. 64, 73-79, 2016
Abstract
A planar wideband balun is proposed. The proposed balun consists of a novel slotline T-junction and three microstrip-slotline transitions. Similar to the principle of the E-plane waveguide T-junction, the slotline T-junction acts as a phase inverter. With the microstrip-slotline transition, the device employs microstrip as feedlines. The radiation loss of the slotline is reduced to improve the insertion loss by loading the slotline with a superstrate and adding via holes along the slotline. An experimental balun with a bandwidth of 128% from 2.2 GHz to 10 GHz is designed, fabricated, and measured for validation. The measured results have reasonable agreement with the simulated ones.
Citation
Ya-Li Yao, Fu-Shun Zhang, Min Liang, and Mao-Ze Wang, "Planar Wideband Balun with Novel Slotline T-Junction Transition," Progress In Electromagnetics Research Letters, Vol. 64, 73-79, 2016.
doi:10.2528/PIERL16092801
References

1. Zhang, Z.-Y., Y.-X. Guo, L. C. Ong, and M. Y. W. Chia, "A new planar Marchand balun," IEEE MTT-S Int. Microw. Symp. Dig., 1207-1210, June 2005, doi 10.1109/MWSYM.2005.1516893.

2. Zhang, W.-W., Y.-N. Liu, Y.-L. Wu, W.-M. Wang, M. Su, and J.-C. Gao, "A complex impedance-transforming coupled-line balun," Progress In Electromagnetics Research Letters, Vol. 48, 123-128, 2014.
doi:10.2528/PIERL14062402

3. Lin, C.-M., C.-C. Su, S.-H. Hung, and Y.-H. Wang, "A compact balun based on microstrip EBG cell and interdigital capacitor," Progress In Electromagnetics Research Letters, Vol. 12, 111-118, 2009.
doi:10.2528/PIERL09092904

4. Yeh, Z.-Y. and Y.-C. Chiang, "A miniature CPW balun constructed with length-reduced 3 dB couples and a short redundant transmission line," Progress In Electromagnetics Research, Vol. 117, 195-208, 2011.
doi:10.2528/PIER11041503

5. Lai, C.-H., Y.-T. Cheng, and T.-G. Ma, "An artificial-transmission-line-based miniaturized doubly balanced ring mixer," PIERS Online, Vol. 6, No. 4, 2010.
doi:10.2529/PIERS090907055749

6. Wu, P., J. R. Liu, and Q. Xue, "Wideband excitation technology of TE20 mode substrate integrated (SIW) and its applications," IEEE Trans. Microw. Theory Techn., Vol. 63, No. 6, 1863-1874, 2015, doi: 10.1109/TMTT.2015.2427808.
doi:10.1109/TMTT.2015.2427808

7. Zhang, Z. Y., Y. X. Guo, L. C. Ong, and M. Y. W. Chia, "A new wide-band planar balun on a single-layer PCB," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 6, 416-418, 2005, doi: 10.1109/LMWC.2005.850486.
doi:10.1109/LMWC.2005.850486

8. Liu, C. and W. Menzel, "Broadband via-free microstrip balun using metamaterial transmission lines," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 7, 437-439, 2008, doi: 10.1109/LMWC.2008.924913.
doi:10.1109/LMWC.2008.924913

9. Xu, H.-X., G.-M. Wang, X. Chen, and T.-P. Li, "Broadband balun using fully artificial fractal-shaped composite right/left handed transmission line," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 1, 16-18, 2012, doi: 10.1109/LMWC.2011.2173929.
doi:10.1109/LMWC.2011.2173929

10. Ang, K. S and Y. C. Leong, "Converting baluns into broad-band impedance-transforming 180 hybrids," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 8, 1990-1995, 2002, doi: 10.1109/TMTT.2002.801353.
doi:10.1109/TMTT.2002.801353

11. Tseng, C.-H. and Y.-C. Hsiao, "A new broadband Marchand balun using slot-coupled microstrip lines," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 3, 157-159, 2010, doi: 10.1109/LMWC.2010.2040216.
doi:10.1109/LMWC.2010.2040216

12. Abbosh, A., "Planar ultra-wide band balun using coupled microstrip lines," Electron. Lett., Vol. 49, No. 9, 662-664, 2013, doi: 10.1049/el.2013.0922.
doi:10.1049/el.2013.0922

13. Gupta, K. C., R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd Ed., Artech House, 1996.

14. Ho, C. H., L. Fan, and K. Chan, "Ultra wide band slotline hybrid-ring couplers," IEEE MTT-S Int. Microw. Symp. Dig., 1175-1178, June 1992, doi 10.1109/MWSYM.1992.188206.

15. Knorr, J., "Slot-line transitions," IEEE Trans. Microw. Theory Tech., Vol. 22, No. 5, 548-554, 1974, doi: 10.1109/TMTT.1974.1128278.
doi:10.1109/TMTT.1974.1128278

16. Janaswamy, R. and D. H. Schaubert, "Characteristic impedance of a wide slotline on low-permittivity substrates," IEEE Trans. Microw. Theory Tech., Vol. 34, No. 8, 900-902, 1986, doi: 10.1109/TMTT.1986.1133465.
doi:10.1109/TMTT.1986.1133465

17. Chung, Y. S., C. Cheon, I. H. Park, and S. Y. Hahn, "Optimal design method for microwave device using time domain method and design sensitivity analysis ---Part I: FETD case," IEEE Trans. Magn., Vol. 37, No. 5, 3289-3293, September 2001.
doi:10.1109/20.952597

18. Che, W., K. Dong, D. Wang, and Y. L. Chow, "Analytical equivalence between substrate-integrated waveguide and rectangular waveguide," IET Microw. Antenna Propag., Vol. 2, No. 1, 35-41, February 2008.
doi:10.1049/iet-map:20060283