Vol. 75
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-05-11
Influences of Damping Resistances on Transient Simulations in Transmission Lines
By
Progress In Electromagnetics Research B, Vol. 75, 27-39, 2017
Abstract
Simulations of electromagnetic transients in transmission lines can be carried out using simple circuit model. In the case of applications of simple circuit models based on π circuits, there are problems mainly caused by numeric oscillations. The lumped-parameter π equivalent model can be used with some advantages. The numeric integration method applied to the simulations of electromagnetic transients is the trapezoidal rule. If this numeric method is associated to the π equivalent model, results obtained from the simulations are distorted by Gibbs' oscillations or numeric ones. The introduction of damping resistance parallel to the series RL branch of the π equivalent model can mitigate Gibbs' oscillations in obtained results. Voltage peaks caused by these oscillations can also be decreased. So, in this paper, the combined influences of the introduction of damping resistance, the number of π circuits and the time step are investigated searching for minimizing Gibbs' oscillations and the voltage peaks in electromagnetic transient simulations. For this, transient simulations are exhaustively carried out for determining the highest voltage peaks, ranges of damping resistances and other parameters of the model, which minimize these voltage peaks caused by Gibbs' oscillations.
Citation
Afonso Jose do Prado, Ketholyn Jaqueline Bespalhulk, Bruno Franca Da Silva, Kassyele Oliveira Conceicao, Marinez Cargnin-Stieler, Elmer Mateus Gennaro, and Jose Pissolato Filho, "Influences of Damping Resistances on Transient Simulations in Transmission Lines," Progress In Electromagnetics Research B, Vol. 75, 27-39, 2017.
doi:10.2528/PIERB16092707
References

1. Macıas, J. A. R., A. G. Exposito, and A. B. Soler, "A comparison of techniques for state-space transient analysis of transmission lines," IEEE Trans. on Power Delivery, Vol. 20, No. 2, 894-903, April 2005.
doi:10.1109/TPWRD.2005.844271

2. Macıas, J. A. R., A. G. Exposito, and A. B. Soler, "Correction to “A comparison of techniques for state-space transient analysis of transmission lines"," IEEE Trans. on Power Delivery, Vol. 20, No. 3, 2358, July 2005.

3. Nelms, R. M., G. B. Sheble, S. R. Newton, and L. L. Grigsby, "Using a personal computer to teach power system transients," IEEE Trans. on Power Systems, Vol. 4, No. 3, 1293-1294, August 1989.
doi:10.1109/59.32630

4. Mamis, M. S., "Computation of electromagnetic transients on transmission lines with nonlinear components," IEE Proc. Generation, Transmission and DistributioN, Vol. 150, No. 2, 200-204, March 2003.
doi:10.1049/ip-gtd:20030115

5. Mamis, M. S. and M. Koksal, "Solution of eigenproblems for state-space transient analysis of transmission lines," Electric Power Systems Research, Vol. 55, No. 1, 7-14, July 2000.
doi:10.1016/S0378-7796(99)00092-9

6. Dommel, H. W., Electromagnetic Transients Program — Rule Book, Oregon, 1984.

7. Prado, A. J., L. S. Lessa, R. C. Monzani, L. F. Bovolato, and J. Pissolato Filho, "Modified routine for decreasing numeric oscillations at associations of lumped elements," Electric Power Systems Research, Vol. 112, No. 1, 56-64, July 2014.

8. Brandao Faria, J. A. and J. Briceno Mendez, "Modal analysis of untransposed bilateral three-phase lines — A perturbation approach," IEEE Trans. on Power Delivery, Vol. 12, No. 1, January 1997.
doi:10.1109/61.568277

9. Brandao Faria, J. A. and J. Briceno Mendez, "On the modal analysis of asymmetrical threephase transmission lines using standard transformation matrices," IEEE Trans. on Power Delivery, Vol. 12, No. 4, October 1997.

10. Morched, A., B. Gustavsen, and M. Tartibi, "A universal model for accurate calculation of electromagnetic transients on overhead lines and underground cables," IEEE Trans. on Power Delivery, Vol. 14, No. 3, 1032-1038, July 1999.
doi:10.1109/61.772350

11. Gustavsen, B. and A. Semlyen, "Combined phase and modal domain calculation of transmission line transients based on vector fitting," IEEE Trans. on Power Delivery, Vol. 13, No. 2, April 1998.

12. Chrysochos, I., G. P.Tsolaridis, T. A. Papadopoulos, and G. K. Papagiannis, "Damping of oscillations related to lumped-parameter transmission line modeling," Conf. on Power Systems Transients (IPST 2015), 7, 2015.

13. Galvao, R. K. H., S. Hadjiloucas, K. H. Kienitz, H. M. Paiva, and R. J. M. Afonso, "Fractional order modeling of large three-dimensional RC networks," IEEE Trans. Circuits and Systems – I: Regular Papers, Vol. 60, No. 3, 624-637, March 2013.
doi:10.1109/TCSI.2012.2209733

14. Gustavsen, B., "Avoiding numerical instabilities in the universal line model by a two-segment interpolation scheme," IEEE Trans. Power Delivery, Vol. 28, No. 3, July 2013.

15. Moreno, P. and A. Ramirez, "Implementation of the numerical Laplace transform: A review," IEEE Trans. on Power Delivery, Vol. 23, No. 4, October 2008.

16. Microtran Power System Analysis Corporation, Transients Analysis Program Reference Manual, Vancouver, 1992.

17. Brandao Faria, J. A., "Overhead Three-phase Transmission Lines – Non-diagonalizable situations," IEEE Transactions on Power Delivery, Vol. 3, No. 4, October 1988.

18. Clarke, E., Circuit Analysis of AC Power Systems, Vol. I, Wiley, 1950.

19. Wedepohl, L. M., H. V. Nguyen, and G. D. Irwin, "Frequency-dependent transformation matrices for untransposed transmission lines using Newton-Raphson method," IEEE Trans. on Power Systems, Vol. 11, No. 3, 1538-1546, August 1996.
doi:10.1109/59.535695

20. Nguyen, T. T. and H. Y. Chan, "Evaluation of modal transformation matrices for overhead transmission lines and underground cables by optimization method," IEEE Trans. on Power Delivery, Vol. 17, No. 1, January 2002.
doi:10.1109/61.974208

21. Nobre, M., W. C. Boaventura, and W. L. A. Neves, "Phase-domain network equivalents for electromagnetic transient studies," The 2005 IEEE Power Engineering Society General Meeting, CD-ROM, San Francisco, USA, June 12–16, 2005.

22. Budner, A., "Introduction of frequency dependent transmission line parameters into an electromagnetic transients program," IEEE Trans. on Power Apparatus and Systems, Vol. 89, 88-97, January 1970.
doi:10.1109/TPAS.1970.292674

23. Carneiro, Jr., S., J. R. Martı, H. W. Domme, and H. M. Barros, "An efficient procedure for the implementation of corona models in electromagnetic transients programs," IEEE Transactions on Power Delivery, Vol. 9, No. 2, April 1994.

24. Martins, T. F. R. D., A. C. S. Lima, S. Carneiro, and Jr., "Effect of impedance approximate formulae on frequency dependence realization," The 2005 IEEE Power Engineering Society General Meeting, CD-ROM, San Francisco, USA, June 12–16, 2005.

25. Marti, J. R., "Accurate modelling of frequency-dependent transmission lines in electromagnetic transients simulations," IEEE Trans. on PAS, Vol. 101, 147-155, January 1982.
doi:10.1109/TPAS.1982.317332

26. Wedepohl, L. M., "Application of matrix methods to the solution of travelling-wave phenomena in polyphase systems," Proceedings IEE, Vol. 110, 2200-2212, December 1963.

27. Wedepohl, L. M. and D. J. Wilcox, "Transient analysis of underground power-transmission system — system model and wave propagation characteristics," Proceedings of IEE, Vol. 120, No. 2, 253-260, 1973.

28. Mamis, M. S. and M. E. Meral, "State-space modeling and analysis of fault arcs," Electric Power Systems Research, Vol. 76, No. 1–3, 46-51, September 2005.
doi:10.1016/j.epsr.2005.04.002

29. Prado, A. J., S. Kurokawa, J. Pissolato Filho, L. F. Bovolato, and E. C. M. Costa, Phase-mode Transformation Matrix Application for Transmission Line and Electromagnetic Transient Analyses, Nova Science Publisher, Inc., 2011.

30. Andrade, P. R., R. C. Monzani, L. S. Lessa, T. Ingelbinck, A. J. Prado, J. Pissolato Filho, and L. F. Bovolato, "Physical model for representing transmission lines by undergraduate students," The 10th Latin-American Congress on Electricity Generation and Transmission — CLAGTEE 2013, CD-ROM, 5, Vina del Mar, Chile, 6–9 de outubro de 2013.

31. Gustavsen, B. and A. Semlyen, "Rational approximation of frequency domain responses by vector fitting," IEEE Trans. on Power Delivery, Vol. 14, No. 3, July 1999.