Vol. 74
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-04-05
Parabolic Trail OBF in Magnetic Anomaly Detection
By
Progress In Electromagnetics Research B, Vol. 74, 23-35, 2017
Abstract
Magnetic anomaly detection (MAD) is to find hidden ferromagnetic objects, and a hidden object is often described as a magnetostatic dipole. Many detection methods are based on the orthonormal basis functions when the target moves along a straight line relatively to the magnetometer. A new kind of parabolic trail orthonormal basis functions (PTOBF) method is proposed to detect the magnetic target when the trajectory of the target is parabola. The simulation experiment confirms that the proposed method can detect the magnetic anomaly signals in white Gaussian noise when SNR is -15.56 dB. The proposed method is sensitive to the characteristic time and curvature. High detection probability and simple implementation of proposed method make it attractive for the real-time applications.
Citation
Yao Fan, Xiaojun Liu, and Guangyou Fang, "Parabolic Trail OBF in Magnetic Anomaly Detection," Progress In Electromagnetics Research B, Vol. 74, 23-35, 2017.
doi:10.2528/PIERB16091301
References

1. Sheinker, A., N. Salomonski, B. Ginzburg, et al. "Magnetic anomaly detection using entropy filter," Measurement Science & Technology, 19, 2008.

2. Sheinker, A., L. Frumkis, B. Ginzburg, et al. "Magnetic anomaly detection using a three-axis magnetometer," IEEE Transactions on Magnetics, Vol. 45, 160-167, 2009.
doi:10.1109/TMAG.2008.2006635

3. Sheinker, A., B. Ginzburg, N. Salomonski, et al. "Magnetic anomaly detection using high-order crossing method," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, 1095-1103, 2012.
doi:10.1109/TGRS.2011.2164086

4. Sheinker, A., B. Lerner, N. Salomonski, et al. "Localization and magnetic moment estimation of a ferromagnetic target by simulated annealing," Measurement Science & Technology, Vol. 18, 3451-3457, 2007.
doi:10.1088/0957-0233/18/11/027

5. Yu, H., S. Feng, and L.-H. Wu, "Synchronous correction of two three-axis magnetometers using FLANN," Sensors and Actuators A — Physical, Vol. 179, 312-318, 2012.
doi:10.1016/j.sna.2012.03.005

6. Nie, X., Z. Pan, D. Zhang, et al. "Energy detection based on undecimated discrete wavelet transform and its application in magnetic anomaly detection," Plos One, Vol. 9, e110829-e110829, 2014.
doi:10.1371/journal.pone.0110829

7. Nie, X. H., Z. M. Pan, and W. N. Zhang, "Wavelet based noise reduction for magnetic anomaly signal contaminated by 1/f noise," Advanced Materials Research, Vol. 889-890, 776-779, 2014.
doi:10.4028/www.scientific.net/AMR.889-890.776

8. Zhou, J. J., C. S. Lin, and Y. C. Huan, "Decreasing noise in magnetic anomaly detection basing on wavelet denoising," Applied Mechanics & Materials, Vol. 368–370, 1860-1863, 2013.
doi:10.4028/www.scientific.net/AMM.368-370.1860

9. Ke, M., P. Liao, and X. Song, "Real-time data mining in magnetic flux leakage detecting in boiler pipeline," International Conference on Digital Manufacturing & Automation, Vol. 2, 130-133, 2010.

10. Wang, Y., F. Weihuang, and D. P. Agrawal, "Intrusion detection in Gaussian distributed wireless sensor networks," IEEE International Conference on Mobile Adhoc & Sensor Systems, 313-321, 2009.

11. Zubaidah, T., B. Kanata, C. Ramadhani, et al. "Comprehensive geomagnetic signal processing for successful earthquake prediction,", 212-219, 2013.

12. Sheinker, A., A. Shkalim, N. Salomonski, et al. "Processing of a scalar magnetometer signal contaminated by 1/fα noise," Sensors & Actuators A Physical, Vol. 138, 105-111, 2007.
doi:10.1016/j.sna.2007.04.018

13. Ma, J. S., J. Jiao, C. Fang, et al. "High sensitive nonlinear modulation magnetoelectric magnetic sensors with a magnetostrictive metglas structure based on bell-shaped geometry," Journal of Magnetism and Magnetic Materials, Vol. 405, 225-230, 2016.
doi:10.1016/j.jmmm.2015.12.073

14. Morag, Y., N. Tal, M. Nazarathy, et al. "Thermodynamic signal-to-noise and channel capacity limits of magnetic induction sensors and communication systems," IEEE Sensors Journal, Vol. 16, 1575-1585, 2016.
doi:10.1109/JSEN.2015.2506341

15. Zhang, H. and M.-Y. Xia, "Magnetic anomaly detection for simultaneous moving target and magnetometer," Proceedings of 2014 3rd Asia-Pacific Conference on Antennas and Propagation (APCAP 2014), 884-888, IEEE, 2014.
doi:10.1109/APCAP.2014.6992641

16. Kay, S. M., Fundamentals of Statistical Signal Processing: Detection Theory, Printice Hall PTR, 1998.