Vol. 64
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-12-12
Mechanically Tunable Wire Medium Metamaterial in the Millimeter Wave Band
By
Progress In Electromagnetics Research Letters, Vol. 64, 93-98, 2016
Abstract
The paper is devoted to experimental and theoretical study of spectra zone characteristics of the wire medium metamaterial with mechanically tunable unit cell. We experimentally demonstrated the effective control possibility of the spectral characteristics of wire medium metamaterial by varying its elementary unit-cell geometry. We established conditions under which the experimental implementation of the wire medium metamaterial at microwaves possesses the properties of a plasma-like medium and the properties band gap structure. A good agreement between the experiment and theory is demonstrated.
Citation
Liubov Ivzhenko, Eugene Odarenko, and Sergey I. Tarapov, "Mechanically Tunable Wire Medium Metamaterial in the Millimeter Wave Band," Progress In Electromagnetics Research Letters, Vol. 64, 93-98, 2016.
doi:10.2528/PIERL16090903
References

1. Brown, J., "Artificial dielectrics," Progress in Dielectrics, Vol. 2, 195-225, 1960.

2. Nicorovichi, N. A., R. C. McPhedran, and L. C. Botten, "Photonic band gaps for arrays of perfectly conducting cylinders," Phys. Rev. E, Vol. 52, No. 1, 1135-1145, 1995.
doi:10.1103/PhysRevE.52.1135

3. Pendry, J. B., A. J. Holden, W. J. Stewart, et al. "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

4. Boutayeb, H., A.-C. Tarot, and K. Mahdjoubi, "Focusing characteristics of a metallic cylindrical electromagnetic band gap structure with defects," Progress In Electromagnetics Research, Vol. 66, 89-103, 2006.
doi:10.2528/PIER06100504

5. Vasilantonakis, N., M. E. Nasir, W. Dickson, G. A. Wurtz, and A. V. Zayats, "Bulk plasmon-polaritons in hyperbolic nanorod metamaterial waveguides," Laser Photonics Rev., Vol. 9, No. 3, 345-353, 2015.
doi:10.1002/lpor.201400457

6. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

7. Wu, D. M., N. Fang, C. Sun, et al. "Terahertz plasmonic high pass filter," Appl. Phys. Lett., Vol. 83, 201-203, 2003.
doi:10.1063/1.1591083

8. Belov, P. A., C. R. Simovski, P. Ikonen, et al. "Image transmission with the subwavelength resolution in microwave, terahertz and optical frequency bands," J. Commun. Technol. Electron., Vol. 52, 1009, 2007.
doi:10.1134/S1064226907090100

9. Lourtioz, M., A. De Lustrac, F. Gadot, and D. Lippens, "Toward controllable photonic crystals for centimeter and millimeter wave devices," J. Lightwave Tech., Vol. 17, 2025-2031, 1999.
doi:10.1109/50.802990

10. Boutayeb, H., T. A. Denidni, A. R. Sebak, and L. Talbi, "Band structure analysis of crystals with discontinuous metallic wires," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 7, 2005.
doi:10.1109/LMWC.2005.851579

11. Belov, P. A. and C. R. Simovski, "Subwavelength metallic waveguides loaded by uniaxial resonant scatterers," Phys. Rev. E, Vol. 72, 036618, 2005.
doi:10.1103/PhysRevE.72.036618

12. Ikonen, P., M. Karkkainen, C. Simovski, et al. "Light-weight base station antenna with artificial wire medium lens," IEE Proc. Microwaves, Antennas and Propag., Vol. 153, No. 2, 163-170, 2006.
doi:10.1049/ip-map:20050078

13. Ikonen, P., P. Belov, C. Simovski, and S. Maslovsk, "Experimental demonstration of subwavelength field channeling at microwave frequencies using a capacitive loaded wire medium," Phys. Rev. B, Vol. 73, 073102, 2006.
doi:10.1103/PhysRevB.73.073102

14. Turpin, J. P., J. A. Bossard, K. L. Morgan, D. H. Werner, and P. L. Werner, "Reconfigurable and tunable metamaterials: A review of the theory and applications," International Journal of Antennas and Propagation, Vol. 2014, Article ID 429837.

15. Li, J., C. M. Shah, W. Withayachumnankul, and D. Abbott, "Mechanically tunable terahertz metamaterials," Appl. Phys. Lett., Vol. 102, 121101, 2013.
doi:10.1063/1.4773238

16. Zhang, F., S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, "Mechanically stretchable and tunable metamaterial absorber," Appl. Phys. Lett., Vol. 106, 091907, 2015.
doi:10.1063/1.4914502

17. Shadrivov, I. V., D. A. Powell, S. K. Morrison, and Y. S. Kivshar, "Scattering of electromagnetic waves in metamaterial superlattices," Appl. Phys. Lett., Vol. 90, 201919, 2007.
doi:10.1063/1.2741148

18. Oskooi, A. F., D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, Vol. 181, 687-702, 2010.
doi:10.1016/j.cpc.2009.11.008

19. But’ko, L. N., A. P. Anzulevich, D. S. Liharev, and S. Moiseev, "Electrodynamics properties of media formed by regular lattices of conducting wires," CSU Bulletin, Physics, Vol. 16, No. 9, 11-17, 1996 (in Russian).