Vol. 71
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-11-07
Classical Power and Energy Relations for Macroscopic Dipolar Continua Derived from the Microscopic Maxwell Equations
By
Progress In Electromagnetics Research B, Vol. 71, 1-37, 2016
Abstract
Positive semi-definite expressions for the time-domain macroscopic energy density in passive, spatially nondispersive, dipolar continua are derived from the underlying microscopic Maxwellian equations satisfied by classical models of discrete bound dipolar molecules or inclusions of the material or metamaterial continua. The microscopic derivation reveals two distinct positive semi-definite macroscopic energy expressions, one that applies to diamagnetic continua (induced magnetic dipole moments) and another that applies to paramagnetic continua (alignment of permanent magnetic dipole moments), which includes ferro(i)magnetic and antiferromagnetic materials. The diamagnetic dipoles are ``unconditionally passive'' in that their Amperian (circulating electric current) magnetic dipole moments are zero in the absence of applied fields. The analysis of paramagnetic continua, whose magnetization is caused by the alignment of randomly oriented permanent Amperian magnetic dipole moments that dominate any induced diamagnetic magnetization, is greatly simplified by first proving that the microscopic power equations for rotating permanent Amperian magnetic dipoles (which are shown to not satisfy unconditional passivity) reduce effectively to the same power equations obeyed by rotating unconditionally passive magnetic charge magnetic dipoles. The difference between the macroscopic paramagnetic and diamagnetic energy expressions is equal to a ``hidden energy'' that parallels the hidden momentum often attributed to Amperian magnetic dipoles. The microscopic derivation reveals that this hidden energy is drawn from the reservoir of inductive energy in the permanent microscopic Amperian magnetic dipole moments. The macroscopic, positive semi-definite, time-domain energy expressions are applied to lossless bianisotropic media to determine the inequalities obeyed by the frequency-domain bianisotropic constitutive parameters. Subtleties associated with the causality as well as the group and energy-transport velocities for diamagnetic media are discussed in view of the diamagnetic inequalities.
Citation
Arthur D. Yaghjian, "Classical Power and Energy Relations for Macroscopic Dipolar Continua Derived from the Microscopic Maxwell Equations," Progress In Electromagnetics Research B, Vol. 71, 1-37, 2016.
doi:10.2528/PIERB16081901
References

1. Poynting, J. H., "On the transfer of energy in the electromagnetic field," Phil. Trans. R. Soc. Lond., Vol. 175, 343-361, January 1884.
doi:10.1098/rstl.1884.0016

2. Maxwell, J. C., A Treatise on Electricity and Magnetism, Unabridged 3rd Ed., Dover, 1954.

3. Yaghjian, A. D., "Reflections on Maxwell’s treatise," Progress In Electromagnetics Research, Vol. 149, 217-249, November 2014; see also Yaghjian, A. D., ``An overview of Maxwell's treatise," FERMAT Multimedia, Vol. 11, 2015.
doi:10.2528/PIER14092503

4. Glasgow, S., M. Ware, and J. Peatross, "Poynting’s theorem and luminal total energy transport in passive dielectric media," Phys. Rev. E, Vol. 64, 046610(1-14), September 2001.
doi:10.1103/PhysRevE.64.046610

5. Mansuripur, M., "On the foundational equations of the classical theory of electrodynamics," Resonance, Vol. 18, 130-155, February 2013.
doi:10.1007/s12045-013-0016-4

6. Welters, A., Y. Avniel, and S. G. Johnson, "Speed-of-light limitations in passive linear media," Phys. Rev. A, Vol. 90, 023847(1-17), August 2014.
doi:10.1103/PhysRevA.90.023847

7. Felsen, L. B. and N. Marcuwitz, Radiation and Scattering of Waves, Wiley/IEEE Press, 1994.
doi:10.1109/9780470546307

8. Kittel, C., Introduction to Solid State Physics, 8th Ed., Wiley, 2005.

9. Yaghjian, A. D., Relativistic Dynamics of the Charged Sphere: Updating the Lorentz-Abraham Model of the Electron, 2nd Ed., Springer, 2006.

10. Yaghjian, A. D., A. Alu, and M. G. Silveirinha, "Anisotropic representation for spatially dispersive periodic metamaterial arrays," Transformation Electromagnetics and Metamaterials, Ch. 13, Springer, 2014.

11. Yaghjian, A. D., A. Alu, and M. G. Silveirinha, "Homogenization of spatially dispersive metamaterial arrays in terms of generalized electric and magnetic polarizations," Photonics and Nanostructures --- Fundamentals and Applications, 374-396, November 2013.

12. Hansen, T. B. and A. D. Yaghjian, Plane-wave Theory of Time-domain Fields: Near- field Scanning Applications, Wiley/IEEE Press, 1999.
doi:10.1109/9780470545522

13. Yaghjian, A. D., "Electric dyadic Green’s functions in the source region," Proc. IEEE, Vol. 68 & 69, 248-263 & 282–285, February 1980 & February 1981.
doi:10.1109/PROC.1980.11620

14. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley, 1999.

15. Chew, W. C., "Vector potential electromagnetics with generalized gauge for inhomogeneous media: formulation," Progress In Electromagnetics Research, Vol. 149, 69-84, November 2014.
doi:10.2528/PIER14060904

16. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.

17. Russakoff, G., "A derivation of the macroscopic Maxwell equations," Am. J. Phys., Vol. 38, 1188-1195, October 1970.
doi:10.1119/1.1976000

18. Tai, C. T., Generalized Vector and Dyadic Analysis, Wiley/IEEE Press, 1996.

19. Yaghjian, A. D., "Maxwell and cavity electromagnetic fields within continuous sources," Am. J. Phys., Vol. 53, 859-863, September 1985.
doi:10.1119/1.14352

20. Yaghjian, A. D., "Boundary conditions for electric quadrupolar continua," Radio Science, Vol. 49, 1289-1299, December 2014.
doi:10.1002/2014RS005530

21. Lorentz, H. A., "The fundamental equations for electromagnetic phenomena in ponderable bodies, deduced from the theory of electrons," Proc. Roy. Acad. Amsterdam, Vol. 5, 254-266, 1902.

22. Rosenfeld, L., Theory of Electrons, Dover, 1965.

23. Van Vleck, J. H., The Theory of Electric and Magnetic Susceptibilities, Oxford University Press, 1932.

24. Robinson, F. N. H., Macroscopic Electromagnetism, Pergamon, 1973.

25. De Groot, S. R. and L. G. Suttorp, Foundations of Electrodynamics, 195-196, North-Holland, 1972.

26. Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd Ed., Butterworth Heinemann, 1984.

27. Yaghjian, A. D., "Extreme electromagnetic boundary conditions and their manifestation at the inner surfaces of spherical and cylindrical cloaks," Metamaterials Journal, Vol. 4, 70-76, August–September 2010.
doi:10.1016/j.metmat.2010.03.006

28. Costa, J. T., M. G. Silveirinha, and A. Alu, "Poynting vector in negative-index metamaterials," Phys. Rev. B, Vol. 83, 165120(1-8), 2011.
doi:10.1103/PhysRevB.83.165120

29. Drude, P., The Theory of Optics, Dover, 2005.

30. Simovski, C. R. and S. A. Tretyakov, "Local constitutive parameters of metamaterials from an effective-medium perspective," Phys. Rev. B, Vol. 75, 195111(1-10), 2007.
doi:10.1103/PhysRevB.75.195111

31. Scher, A. D. and E. F. Kuester, "Boundary effects in the electromagnetic response of a metamaterial in the case of normal incidence," Progress In Electromagnetics Research B, Vol. 14, 341-381, 2009.
doi:10.2528/PIERB09021107

32. Shore, R. A. and A. D. Yaghjian, "Traveling waves on two- and three-dimensional periodic arrays of lossless scatterers," Radio Science, Vol. 42, RS6S21(1-40), 2007.
doi:10.1029/2007RS003647

33. Yaghjian, A. D. and S. Maci, "Alternative derivation of electromagnetic cloaks and concentrators," New Journal of Physics, Vol. 10, 115022(1-29), November 2008.

34. Yaghjian, A. D., "Power-energy & dispersion relations for diamagnetic media," Proceedings of the IEEE APS Symposium, Charleston SC, 4 pages, June 2009.

35. Plonsey, R. and R. E. Collin, Principles and Applications of Electromagnetic Fields, McGraw-Hill, 1961.

36. Abraham, M. and R. Becker, The Classical Theory of Electricity and Magnetism, Blackie, 1932.

37. Penfield, P., Jr. and H. A. Haus, Electrodynamics of Moving Media, M.I.T. Press, 1967.

38. McDonald, K. T., "On the definition of `hidden' momentum,", http://physics.princeton.edu/mcdonald/examples/hiddendef.pdf, accessed 5 August 2015.

39. Yaghjian, A. D. and S. R. Best, "Impedance, bandwidth, and Q of antennas," IEEE Trans. Antennas Propagat., Vol. 53, 1298-1324, April 2005; Correction, Vol. 55, 3748, December 2007.
doi:10.1109/TAP.2005.844443

40. Yaghjian, A. D., "Internal energy, Q-energy, Poynting’s theorem, and the stress dyadic in dispersive material," IEEE Trans. Antennas Propagat., Vol. 55, 1495-1505, June 2007.
doi:10.1109/TAP.2007.897350

41. Marques, R., L. Jelinek, M. J. Freire, J. D. Baena, and M. Lapine, "Bulk metamaterials made of resonant rings," Proc. IEEE, Vol. 99, 1660-1668, October 2011.
doi:10.1109/JPROC.2011.2141970

42. Alu, A., A. D. Yaghjian, R. A. Shore, and M. G. Silveirinha, "Causality relations in the homogenization of metamaterials," Phys. Rev. B, Vol. 84, 054305(1-16), August 2011.

43. Yaghjian, A. D., S. Maci, and E. Martini, "Characteristic wave velocities in spherical electromagnetic cloaks," New Journal of Physics, Vol. 11, 113011(1-14), November 2009.

44. Boyd, R. W. and D. J. Gunther, "Controlling the velocity of light pulses," Science, Vol. 326, 1074-1077, November 2009.
doi:10.1126/science.1170885

45. Wood, B. and J. B. Pendry, "Metamaterials at zero frequency," J. Phys. Condens. Matter, Vol. 19, 076208(1-9), 2007.
doi:10.1088/0953-8984/19/7/076208

46. Sohl, C., M. Gustafsson, and A. Bernland, "Some paradoxes associated with a recent sum rule in scattering theory," Proc. URSI General Assembly, Chicago, USA, August 2008.