Vol. 63
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-10-22
Design of a UWB Filtering Antenna with Defected Ground Structure
By
Progress In Electromagnetics Research Letters, Vol. 63, 65-70, 2016
Abstract
In this paper, a band-notched UWB filtering antenna with defected ground structure (DGS) is presented. This defected ground structure as a lowpass filter (LPF) plays a role in filtering unwanted band. The DGS is applied to suppress the upper passband spectrum of the proposed antenna. A U-shaped slot line etched in the feeding line creates a single band-notched characteristic in 3.3-3.83 GHz for WIMAX to avoid potential interference with the existing system. The measured return loss has a wide fractional bandwidth up to 127.6%, which covers a range of 2.43-11 GHz, with the return loss higher than 10 dB except notch band and less than 2 dB up to 16 GHz. The measured and simulated results reveal that the antenna has good upper stopband performance and consistent quasi-omnidirectional radiation pattern within the UWB frequency range.
Citation
Rong Li, and Peng Gao, "Design of a UWB Filtering Antenna with Defected Ground Structure," Progress In Electromagnetics Research Letters, Vol. 63, 65-70, 2016.
doi:10.2528/PIERL16081301
References

1. Tomar, S. and A. Kumar, "Design of a novel compact planar monopole UWB antenna with triple band-notched characteristics," Signal Processing and Integrated Network, 56-59, 2015.

2. Liu, H. W. and C. F. Yang, "Miniature hook-shaped monopole antenna for UWB applications," Electronics Letters, Vol. 46, No. 4, 265-266, 2010.
doi:10.1049/el.2010.3080

3. Wu, S. J., C. H. Kang, K. H. Chen, and J. H. Tarng, "Study of an ultrawideband monople antenna with a band-notched open-looped resonator," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 6, 1890-1897, 2010.
doi:10.1109/TAP.2010.2046839

4. Chen, Y. L. and Y. G. Zhou, "Design of a filter-antenna subsystem for UWB communications," Microwave, Antennas, Propagation and EMC Technologies for Wireless Communications, 593-595, 2009.

5. Wong, S. W., T. G. Huang, C. X. Mao, Z. N. Chen, and Q. X. Chun, "Planar filtering ultra-wideband (UWB) antenna with shorting pin," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 948-953, 2013.
doi:10.1109/TAP.2012.2223438

6. Mohammad, H. B., K. C. Chandan, C. H. Goh, and D. Sanjay, "An impulse UWB patch antenna with integrated bandpass filter," Telecommunication Technologies 2008 and 2008 2nd Malaysia Conference on Photonics, 166-169, 2008.

7. Jung, N. L., H. Y. Jin, H. K. Ji, K. P. Jong, and S. K. Jin, "The design of UWB bandpass filter-combined ultra-wide band antenna," Vehicular Technology Conference, 1-5, 2008.

8. Jyoti, R. P., K. Prasadu, and S. K. Rakhesh, "A wide-band monopole antenna in combination with a UWB microwave band-pass filter for application in UWB communication system," 2010 Annual IEEE India Conference, 1-4, 2010.

9. Rajan, S. and A. K. Prakash, "A very compact triple band notched microstrip fed UWB antenna," Communication Technologies, 906-909, 2015.

10. Song, C. Y., T. Y. Yang, W. W. Lin, and X. L. Yan, "Design of a band-nothced UWB antenna based on EBG structure," Microwave and Millimeter Wave Circuits and System Technology, 146-149, 2013.

11. Wang, J. W., J. Y. Pan, X. N. Ma, and Y. Q. Sun, "A band-notched UWB antenna with L-shped slots and open-loop resonator," Applied Superconductivity and Electromagnetic Devices, 312-315, 2013.