Vol. 52
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-11-21
EMI Shielding Effectiveness of Composites Based on Barium Ferrite, PANI, and MWCNT
By
Progress In Electromagnetics Research M, Vol. 52, 79-87, 2016
Abstract
An electromagnetic interference (EMI) shielding material based on the composite of BaFe12O19, polyaniline (PANI) and multi-walled carbon nanotube (MWCNT) was proposed. The constituents of the composite were brought together through mechanical mixing and the in-situ polymerization of aniline on the BaFe12O19 and MWCNT surfaces. A series of composite with different MWCNT wt% loadings (0, 5, 10, 15, 20 and 25wt%) was prepared, and its effect on the EMI shielding performance was investigated. X-ray diffraction analysis was performed on all synthesized composites to confirm the phase formations. FESEM micrographs reveal the PANI particle formation on both BaFe12O19 and MWCNT surfaces. Electromagnetic measurements were done by using a rectangular waveguide connected to a network analyser to obtain the permeability, μr, permittivity, εr, and shielding effectiveness (SEA and SER). The increase in the MWCNT loading results in the enhancement of the composite's shielding performance to a certain limit. Optimum EMI shielding performance are shown by sample PBM4 (20wt% MWCNT) with SER and SEA values of 5.14 dB at 8.2 GHz and 36.41 dB at 12.4 GHz, respectively. influence of different MWCNT loadings (0, 5, 10, 15, 20 and 25wt%) on the EMI shielding performance of a composite consisting of BaFe12O19, polyaniline (PANI) and multi-walled carbon nanotube (MWCNT) were investigated.
Citation
Muhammad Hanif Zahari, Beh Hoe Guan, Ee Meng Cheng, Muhammad Farham Che Mansor, and Kean Chuan Lee, "EMI Shielding Effectiveness of Composites Based on Barium Ferrite, PANI, and MWCNT," Progress In Electromagnetics Research M, Vol. 52, 79-87, 2016.
doi:10.2528/PIERM16080701
References

1. Tong, X. C., Advanced Materials and Design for Electromagnetic Interference Shielding, Taylor & Francis, 2008.
doi:10.1201/9781420073591

2. Hibst, H., "Hexagonal ferrites from melts and aqueous solutions, magnetic recording materials," Angewandte Chemie International Edition in English, Vol. 21, 270-282, 1982.
doi:10.1002/anie.198202701

3. Lotgering, F. K., P. R. Locher, and R. P. van Stapele, "Anisotropy of hexagonal ferrites with M, W and Y structures containing Fe3+ and Fe2+ as magnetic ions," Journal of Physics and Chemistry of Solids, Vol. 41, 481-487, 1980.
doi:10.1016/0022-3697(80)90178-X

4. Albanese, G., A. Deriu, and S. Rinaldi, "Sublattice magnetization and anisotropy properties of Ba3Co2Fe24O41 hexagonal ferrite," Journal of Physics C: Solid State Physics, Vol. 9, 1313, 1976.
doi:10.1088/0022-3719/9/7/023

5. Xu, P., X. Han, and M. Wang, "Synthesis and magnetic properties of BaFe12O19 hexaferrite nanoparticles by a reverse microemulsion technique," The Journal of Physical Chemistry C, Vol. 111, 5866-5870, 2007.
doi:10.1021/jp068955c

6. Liu, J., P. Liu, X. Zhang, D. Pan, P. Zhang, and M. Zhang, "Synthesis and properties of single domain sphere-shaped barium hexa-ferrite nano powders via an ultrasonic-assisted co-precipitation route," Ultrasonics Sonochemistry, Vol. 23, 46-52, March 2015.
doi:10.1016/j.ultsonch.2014.08.001

7. Saini, P., V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, "Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding," Materials Chemistry and Physics, Vol. 113, 919-926, 2009.
doi:10.1016/j.matchemphys.2008.08.065

8. Duan, Y., L. Shunhua, and G. Hongtao, "Investigation of electrical conductivity and electromagnetic shielding effectiveness of polyaniline composite," Science and Technology of Advanced Materials, Vol. 6, 513-518, 2005.
doi:10.1016/j.stam.2005.01.002

9. Singh, K., A. Ohlan, V. H. Pham, B. R, S. Varshney, J. Jang, S. H. Hur, W. M. Choi, M. Kumar, S. K. Dhawan, B.-S. Kong, and J. S. Chung, "Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution," Nanoscale, Vol. 5, 2411-2420, 2013.
doi:10.1039/c3nr33962a

10. Sharma, B. K., N. Khare, R. Sharma, S. K. Dhawan, V. D. Vankar, and H. C. Gupta, "Dielectric behavior of polyaniline–CNTs composite in microwave region," Composites Science and Technology, Vol. 69, 1932-1935, 2009.
doi:10.1016/j.compscitech.2009.04.012

11. Han, M. and L. Deng, High Frequency Properties of Carbon Nanotubes and Their Electromagnetic Wave Absorption Properties, J. M. Marulanda, Ed., Carbon Nanotubes Applications on Electron Devices, InTech, 2011.

12. Qin, F. and C. Brosseau, "A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles," Journal of Applied Physics, Vol. 111, 061301, 2012.
doi:10.1063/1.3688435

13. Pullar, R. C., "Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics," Progress in Materials Science, Vol. 57, 1191-1334, 2012.
doi:10.1016/j.pmatsci.2012.04.001

14. Huo, J., L. Wang, and H. Yu, "Polymeric nanocomposites for electromagnetic wave absorption," Journal of Materials Science, Vol. 44, 3917-3927, 2009.
doi:10.1007/s10853-009-3561-1

15. Wang, Y., "Research progress on nanostructured radar absorbing materials," Energy and Power Engineering, Vol. 03, 580-584, 2011.
doi:10.4236/epe.2011.34072

16. Tadjarodi, A., H. Kerdari, and M. Imani, "Ba0.69Sr0.17Cd0.07Zn0.07Fe12O19 nanostrucutres/conducting polyaniline nanocomposites; synthesis, characterization and microwave absorption performance," Journal of Alloys and Compounds, Vol. 554, 284-292, 2013.
doi:10.1016/j.jallcom.2012.11.161

17. Fan, Z., G. Luo, Z. Zhang, L. Zhou, and F. Wei, "Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites," Materials Science and Engineering: B, Vol. 132, 85-89, 2006.
doi:10.1016/j.mseb.2006.02.045

18. Dhawan, S. K., K. Singh, A. K. Bakhshi, and A. Ohlan, "Conducting polymer embedded with nanoferrite and titanium dioxide nanoparticles for microwave absorption," Synthetic Metals, Vol. 159, 2259-2262, 2009.
doi:10.1016/j.synthmet.2009.08.031

19. Goldman, A., Modern Ferrite Technology, Springer Science & Business Media, 2006.

20. Bandaru, P. R., "Electrical properties and applications of carbon nanotube structures," Journal of Nanoscience and Nanotechnology, Vol. 7, 1239-1267, 2007.
doi:10.1166/jnn.2007.307

21. Phan, C. H., M. Mariatti, and Y. H. Koh, "Electromagnetic interference shielding performance of epoxy composites filled with multiwalled carbon nanotubes/manganese zinc ferrite hybrid fillers," Journal of Magnetism and Magnetic Materials, Vol. 401, 472-478, 2016.
doi:10.1016/j.jmmm.2015.10.067

22. Wang, Z., G. Wei, and G. L. Zhao, "Enhanced electromagnetic wave shielding effectiveness of Fe doped carbon nanotubes/epoxy composites," Applied Physics Letters, Vol. 103, 183109, 2013.
doi:10.1063/1.4828356

23. Verma, V., J. Kapil, and N. Singh, "Structural, magnetic properties of soft and hard ferrites and their emi shielding application in X-band frequency range," International Journal of Engineering Research & Technology (IJERT), 557-560, 2014.

24. Malek, M. F. B. A., E. M. Cheng, O. Nadiah, H. Nornikman, M. Ahmed, M. Z. A. Abdul Aziz, A. R. Othman, P. J. Soh, A. A. A.-H. Azremi, A. Hasnain, and M. N. Taib, "Rubber tire dust-rice husk pyramidal microwave absorber," Progress In Electromagnetics Research, Vol. 117, 449-477, 2011.
doi:10.2528/PIER11040801

25. Stoll, R. L., The Analysis of Eddy Currents, Oxford University Press, 1974.

26. Pry, R. H. and C. P. Bean, "Calculation of the energy loss in magnetic sheet materials using a domain model," Journal of Applied Physics, Vol. 29, 532-533, 1958.
doi:10.1063/1.1723212

27. Li, Y., Y. Huang, S. Qi, L. Niu, Y. Zhang, and Y. Wu, "Preparation, magnetic and electromagnetic properties of polyaniline/strontium ferrite/multiwalled carbon nanotubes composite," Applied Surface Science, Vol. 258, 3659-3666, 2012.
doi:10.1016/j.apsusc.2011.12.001